An a priori Campanato type regularity condition for local minimisers in the calculus of variations
An a priori Campanato type regularity condition is established for a class of W1X local minimisers of the general variational integral where is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space , µ < n, Campanato space and the space of bounded mean oscillation . The admissible maps are of Sobolev class W1,p, satisfying a Dirichlet boundary...