Displaying 121 – 140 of 332

Showing per page

Gradient flows in Wasserstein spaces and applications to crowd movement

Filippo Santambrogio (2010/2011)

Séminaire Équations aux dérivées partielles

Starting from a motivation in the modeling of crowd movement, the paper presents the topics of gradient flows, first in n , then in metric spaces, and finally in the space of probability measures endowed with the Wasserstein distance (induced by the quadratic transport cost). Differently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-Gigli-Savaré, we propose an approach where the optimality conditions for the minimizers of the optimization problems that one solves at every time step...

Gradient flows in Wasserstein spaces and applications to crowd movement

Filippo Santambrogio (2009/2010)

Séminaire Équations aux dérivées partielles

Starting from a motivation in the modeling of crowd movement, the paper presents the topics of gradient flows, first in n , then in metric spaces, and finally in the space of probability measures endowed with the Wasserstein distance (induced by the quadratic transport cost). Differently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-Gigli-Savaré, we propose an approach where the optimality conditions for the minimizers of the optimization problems that one solves at every time step...

Gradient flows of the entropy for jump processes

Matthias Erbar (2014)

Annales de l'I.H.P. Probabilités et statistiques

We introduce a new transport distance between probability measures on d that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is...

Higher-order phase transitions with line-tension effect

Bernardo Galvão-Sousa (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire 4 (1987) 487–512], and in a different form by Alberti et al. in [Arch. Rational Mech. Anal.u is a scalar density function and...

Higher-order phase transitions with line-tension effect

Bernardo Galvão-Sousa (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire4 (1987) 487–512], and in a different form by Alberti et al. in [Arch. Rational Mech. Anal.144 (1998) 1–46] for a first-order...

Hölder regularity of two-dimensional almost-minimal sets in n

Guy David (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

We give a different and probably more elementary proof of a good part of Jean Taylor’s regularity theorem for Almgren almost-minimal sets of dimension 2 in 3 . We use this opportunity to settle some details about almost-minimal sets, extend a part of Taylor’s result to almost-minimal sets of dimension 2 in n , and give the expected characterization of the closed sets E of dimension 2 in 3 that are minimal, in the sense that H 2 ( E F ) H 2 ( F E ) for every closed set F such that there is a bounded set B so that F = E out...

Homogenization of periodic nonconvex integral functionals in terms of Young measures

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ -limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.

Homogenization of periodic nonconvex integral functionals in terms of Young measures

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ-limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.

Homogenization of variational problems in manifold valued Sobolev spaces

Jean-François Babadjian, Vincent Millot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of integral functionals is studied under the constraint that admissible maps have to take their values into a given smooth manifold. The notion of tangential homogenization is defined by analogy with the tangential quasiconvexity introduced by Dacorogna et al. [Calc. Var. Part. Diff. Eq. 9 (1999) 185–206]. For energies with superlinear or linear growth, a Γ-convergence result is established in Sobolev spaces, the homogenization problem in the space of functions of bounded variation...

Inégalité isopérimétrique et calibration

Frédéric Helein (1994)

Annales de l'institut Fourier

On montre que l’inégalité isopérimétrique pour un domaine dans le plan euclidien, la sphère de dimension 2, ou l’espace hyperbolique de dimension 2, peut s’obtenir à l’aide d’une calibration.

Inverse Function Theorems and Jacobians over Metric Spaces

Luca Granieri (2014)

Analysis and Geometry in Metric Spaces

We present inversion results for Lipschitz maps f : Ω ⊂ ℝN → (Y, d) and stability of inversion for uniformly convergent sequences. These results are based on the Area Formula and on the l.s.c. of metric Jacobians.

Currently displaying 121 – 140 of 332