Displaying 181 – 200 of 300

Showing per page

On the Curvature and Heat Flow on Hamiltonian Systems

Shin-ichi Ohta (2014)

Analysis and Geometry in Metric Spaces

We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.

On the Example of Almost Pseudo-Z-symmetric Manifolds

Kanak Kanti Baishya, Patrik Peška (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In the present paper we have obtained a new example of non-Ricci-flat almost pseudo-Z-symmetric manifolds in the class of equidistant spaces, which admit non-trivial geodesic mappings.

On the finiteness of the fundamental group of a compact shrinking Ricci soliton

Zhenlei Zhang (2007)

Colloquium Mathematicae

Myers's classical theorem says that a compact Riemannian manifold with positive Ricci curvature has finite fundamental group. Using Ambrose's compactness criterion or J. Lott's results, M. Fernández-López and E. García-Río showed that the finiteness of the fundamental group remains valid for a compact shrinking Ricci soliton. We give a self-contained proof of this fact by estimating the lengths of shortest geodesic loops in each homotopy class.

On the generic spectrum of a riemannian cover

Steven Zelditch (1990)

Annales de l'institut Fourier

Let M be a compact manifold let G be a finite group acting freely on M , and let G be the (Fréchet) space of G -invariant metric on M . A natural conjecture is that, for a generic metric in G , all eigenspaces of the Laplacian are irreducible (as orthogonal representations of G ). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim M dim V for all irreducibles V of G . As an application, we construct isospectral manifolds with simple eigenvalue...

On the multiplicity of eigenvalues of conformally covariant operators

Yaiza Canzani (2014)

Annales de l’institut Fourier

Let ( M , g ) be a compact Riemannian manifold and P g an elliptic, formally self-adjoint, conformally covariant operator of order m acting on smooth sections of a bundle over M . We prove that if P g has no rigid eigenspaces (see Definition 2.2), the set of functions f C ( M , ) for which P e f g has only simple non-zero eigenvalues is a residual set in C ( M , ) . As a consequence we prove that if P g has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the C -topology....

On the Paneitz energy on standard three sphere

Paul Yang, Meijun Zhu (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We prove that the Paneitz energy on the standard three-sphere S 3 is bounded from below and extremal metrics must be conformally equivalent to the standard metric.

On the Paneitz energy on standard three sphere

Paul Yang, Meijun Zhu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove that the Paneitz energy on the standard three-sphere S3 is bounded from below and extremal metrics must be conformally equivalent to the standard metric.

Pincement de la première valeur propre du laplacien pour les hypersurfaces et rigidité

Julien Roth (2007/2008)

Séminaire de théorie spectrale et géométrie

Robert C. Reilly a obtenu des majorations de la première valeur propre du laplacien pour les hypersurfaces de l’espace euclidien. De plus, il a montré que le cas d’égalité dans ces majorations est atteint uniquement pour les sphères géodésiques. Dans cet exposé, nous nous intéressons au problème de pincement pour ces majorations. Nous montrons que si le cas d’égalité est presque atteint, alors l’hypersurface est proche d’une sphère, en un sens que nous préciserons. Nous déduisons ensuite des résultats...

Currently displaying 181 – 200 of 300