Displaying 2581 – 2600 of 5556

Showing per page

Monopole metrics and the orbifold Yamabe problem

Jeff A. Viaclovsky (2010)

Annales de l’institut Fourier

We consider the self-dual conformal classes on n # ℂℙ 2 discovered by LeBrun. These depend upon a choice of n points in hyperbolic 3 -space, called monopole points. We investigate the limiting behavior of various constant scalar curvature metrics in these conformal classes as the points approach each other, or as the points tend to the boundary of hyperbolic space. There is a close connection to the orbifold Yamabe problem, which we show is not always solvable (in contrast to the case of compact manifolds)....

Morse index and bifurcation of p-geodesics on semi Riemannian manifolds

Monica Musso, Jacobo Pejsachowicz, Alessandro Portaluri (2007)

ESAIM: Control, Optimisation and Calculus of Variations

Given a one-parameter family { g λ : λ [ a , b ] } of semi Riemannian metrics on an n-dimensional manifold M, a family of time-dependent potentials { V λ : λ [ a , b ] } and a family { σ λ : λ [ a , b ] } of trajectories connecting two points of the mechanical system defined by ( g λ , V λ ) , we show that there are trajectories bifurcating from the trivial branch σ λ if the generalized Morse indices μ ( σ a ) and μ ( σ b ) are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate...

Motion by curvature of planar networks

Carlo Mantegazza, Matteo Novaga, Vincenzo Maria Tortorelli (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider the motion by curvature of a network of smooth curves with multiple junctions in the plane, that is, the geometric gradient flow associated to the length functional. Such a flow represents the evolution of a two–dimensional multiphase system where the energy is simply the sum of the lengths of the interfaces, in particular it is a possible model for the growth of grain boundaries. Moreover, the motion of these networks of curves is the simplest example of curvature flow for sets which...

Multiplicity results for the prescribed scalar curvature on low spheres

Mohamed Ben Ayed, Mohameden Ould Ahmedou (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper, we consider the problem of multiplicity of conformal metrics of prescribed scalar curvature on standard spheres 𝕊 3 , 𝕊 4 . Under generic conditions we establish someMorse Inequalities at Infinity, which give a lower bound on the number of solutions to the above problem in terms of the total contribution of its critical points at Infinityto the difference of topology between the level sets of the associated Euler-Lagrange functional. As a by-product of our arguments we derive a new existence...

Currently displaying 2581 – 2600 of 5556