Constant mean curvature hypersurfaces with constant -invariant.
It is still an open question whether a compact embedded hypersurface in the Euclidean space with constant mean curvature and spherical boundary is necessarily a hyperplanar ba1l or a spherical cap, even in the simplest case of a compact constant mean curvature surface in R3 bounded by a circle. In this paper we prove that this is true for the case of the scalar curvature. Specifica1ly we prove that the only compact embedded hypersurfaces in the Euclidean space with constant scalar curvature and...
L’objet de cette étude est de trouver des constantes explicites (dépendant d’un minimum d’invariants riemanniens et les plus faibles possible) dans différents types d’inégalités de Sobolev.
We show that if is a discrete subgroup of the group of the isometries of , and if is a representation of into the group of the isometries of , then any -equivariant map extends to the boundary in a weak sense in the setting of Borel measures. As a consequence of this fact, we obtain an extension of a result of Besson, Courtois and Gallot about the existence of volume non-increasing, equivariant maps. Then, we show that the weak extension we obtain is actually a measurable -equivariant...
L’objectif de cet article est de proposer une nouvelle méthode de construction de métriques d’Einstein. Le procédé consiste à considérer un morphisme harmonique ; on déforme ensuite biconformément la métrique en , en conservant l’harmonicité, ce qui simplifie le calcul de la courbure de Ricci. L’équation se traduit alors en un système différentiel en termes des paramètres de la déformation. On montre d’abord l’existence de solutions par un procédé dynamique. Puis, on résout ce système dans...
This paper gives a description of a method of direct construction of the BGG sequences of invariant operators on manifolds with AHS structures on the base of representation theoretical data of the Lie algebra defining the AHS structure. Several examples of the method are shown.
In this paper, we explain how the end-to-end construction together with the moduli space theory can be used to produce compact constant mean curvature hypersurfaces with nontrivial topology. For the sake of simplicity, the hypersurfaces we construct have a large group of symmetry but the method can certainly be used to provide many more examples with less symmetries.
In this paper, we present a new approach to the construction of Einstein metrics by a generalization of Thurston's Dehn filling. In particular in dimension 3, we will obtain an analytic proof of Thurston's result.