Displaying 101 – 120 of 177

Showing per page

Principe de recollement des équations des contraintes en relativité générale

Julien Cortier (2011/2012)

Séminaire de théorie spectrale et géométrie

La méthode de «  recollement  » permettant de trouver des solutions des équations des contraintes relativistes est décrite. En particulier, on expose la méthode de Corvino-Schoen pour construire des familles de solutions sur une variété non-compacte avec géométrie prescrite sur un bout asymptotique, en insistant sur le recollement «  non-localisé  ». Une liste de résultats obtenus par divers auteurs à partir de telles techniques est alors fournie, incluant la question du recollement de métriques...

Problèmes de Yamabe généralisés et ses applications

Yuxin Ge (2006/2007)

Séminaire de théorie spectrale et géométrie

On étudie quelques équations complètement non linéaires issues de la géométrie conforme. Par une méthode de flot géométrique, on prouve l’existence des solutions. En utilisant ce résultat analytique, on obtient un théorème sur la topologie de la variété : soit M une variété riemannienne compacte de dimension 3. S’il existe une metrique g à courbure scalaire strictement positive telle que l’intégrale de la σ 2 -courbure scalaire soit positive, alors M est difféomorphe à un quotient de la sphere.

Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds

Krishnendu De, Uday Chand De (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The object of the present paper is to study ξ -projectively flat and φ -projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.

Currently displaying 101 – 120 of 177