Sobre inmersiones isométricas de variedades rienmmannianas en espacios euclideos.
Our aim is to show a method of finding all natural transformations of a functor into itself. We use here the terminology introduced in [4,5]. The notion of a soldered double linear morphism of soldered double vector spaces (fibrations) is defined. Differentiable maps commuting with -soldered automorphisms of a double vector space are investigated. On the set of such mappings, appropriate partial operations are introduced. The natural transformations are bijectively related with the elements...
We present the general theory of barrier solutions in the sense of De Giorgi, and we consider different applications to ordinary and partial differential equations. We discuss, in particular, the case of second order geometric evolutions, where the barrier solutions turn out to be equivalent to the well-known viscosity solutions.
Given a Lagrangian system with non-holonomic constraints we construct an almost product structure on the tangent bundle of the configuration manifold such that the projection of the Euler-Lagrange vector field gives the dynamics of the system. In a degenerate case, we develop a constraint algorithm which determines a final constraint submanifold where a completely consistent dynamics of the initial system exists.
Given a finite additive abelian group and an integer , with , denote by the simple incidence structure whose point-set is and whose blocks are the -subsets of such that . It is known (see [Caggegi, A., Di Bartolo, A., Falcone, G.: Boolean 2-designs and the embedding of a 2-design in a group arxiv 0806.3433v2, (2008), 1–8.]) that is a 2-design, if is an elementary abelian -group with a prime divisor of . From [Caggegi, A., Falcone, G., Pavone, M.: On the additivity of block...
We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein...