Stable Teichmüller quasigeodesics and ending laminations.
Let be an oriented cusped hyperbolic 3-manifold and let be a topological ideal triangulation of . We give a characterization for to be isotopic to an ideal geodesic triangulation; moreover we give a characterization for to flatten into a partially flat triangulation. Finally we prove that straightening combinatorially equivalent topological ideal cell decompositions gives the same geodesic decomposition, up to isometry.
Given a model 2-complex K P of a group presentation P, we associate to it an integer matrix ΔP and we prove that a cellular map f: K P → S 2 is root free (is not strongly surjective) if and only if the diophantine linear system ΔP Y = (f) has an integer solution, here (f)is the so-called vector-degree of f
Let (W,S) be a Coxeter system such that no two generators in S commute. Assume that the Cayley graph of (W,S) does not contain adjacent hexagons. Then for any two vertices x and y in the Cayley graph of W and any number k ≤ d = dist(x,y) there are at most two vertices z such that dist(x,z) = k and dist(z,y) = d - k. Allowing adjacent hexagons, but assuming that no three hexagons can be adjacent to each other, we show that the number of such intermediate vertices at a given distance from x and y...
Une structure complexe affine (resp. projective) sur une surface complexe est la donnée d’un atlas de cartes à valeur dans (resp. ) à changements de cartes localement constants dans le groupe affine (resp. le groupe ). Dans cet article nous classifions les surfaces complexes affines et calculons, à surface complexe fixée, l’espace de déformation des structures complexes affines sur compatibles avec sa structure analytique. Nous montrons aussi que toute structure projective sur une surface...