Convex functions on complete noncompact manifolds : differentiable structure
In [R] explicit representatives for -principal bundles over are constructed, based on these constructions explicit free -actions on the total spaces are described, with quotients exotic -spheres. To describe these actions a classification formula for the bundles is used. This formula is not correct. In Theorem 1 below, we correct the classification formula and in Theorem 2 we exhibit the correct indices of the exotic -spheres that occur as quotients of the free -actions described above.
It is well-known that any isotopically connected diffeomorphism group G of a manifold determines a unique singular foliation . A one-to-one correspondence between the class of singular foliations and a subclass of diffeomorphism groups is established. As an illustration of this correspondence it is shown that the commutator subgroup [G,G] of an isotopically connected, factorizable and non-fixing diffeomorphism group G is simple iff the foliation defined by [G,G] admits no proper minimal sets....
Dans ce texte, on définit, pour les immersions lagrangiennes de variétés fermées dans , une notion d’aire symplectique enlacée. Puis on construit, dans le cas , un certain nombre de surfaces lagrangiennes enlaçant une aire infinie. Dans le cas des surfaces exactes, elles ont le minimum de points doubles possible permis par la théorie (sauf la sphère), c’est-à-dire moins que prévu par quelques conjectures.