Cobordism Theories of Unitary Manifolds with Singularities and Formal Group Laws.
Dans cet article, on montre comment le cobordisme d’applications et le cobordisme fibré fournissent les obstructions à des problèmes de lissage topologique de singularités avec un lieu singulier compact. On calcule dans le cas des petites dimensions les groupes de cobordisme fibré. Les résultats connus sur le cobordisme fibré ou sur son image dans le cobordisme d’application permettent le calcul d’un certain nombre de ces obstructions.
We calculate the group of cobordisms of k-codimensional maps into Euclidean space with no singularities more complicated than fold for a 2k+2-dimensional source manifold in both oriented and unoriented cases.
Let be a transversely orientable transversely real-analytic codimension one minimal foliation of a paracompact manifold . We show that if the fundamental group of each leaf of is isomorphic to , then is without holonomy. We also show that if and the fundamental group of each leaf of is isomorphic to (), then is without holonomy.
We provide a simple characterization of codimension two submanifolds of that are of algebraic type, and use this criterion to provide examples of transcendental submanifolds when . If the codimension two submanifold is a nonsingular algebraic subset of whose Zariski closure in is a nonsingular complex algebraic set, then it must be an algebraic complete intersection in .
Nous démontrons des théorèmes de dualité de Poincaré et de de Rham pour la cohomologie basique et l’homologie des courants transverses invariants d’un feuilletage riemannien.