Previous Page 3

Displaying 41 – 58 of 58

Showing per page

Moduli Spaces of PU ( 2 ) -Instantons on Minimal Class VII Surfaces with b 2 = 1

Konrad Schöbel (2008)

Annales de l’institut Fourier

We describe explicitly the moduli spaces g pst ( S , E ) of polystable holomorphic structures with det 𝒦 on a rank two vector bundle E with c 1 ( E ) = c 1 ( K ) and c 2 ( E ) = 0 for all minimal class VII surfaces S with b 2 ( S ) = 1 and with respect to all possible Gauduchon metrics g . These surfaces S are non-elliptic and non-Kähler complex surfaces and have recently been completely classified. When S is a half or parabolic Inoue surface, g pst ( S , E ) is always a compact one-dimensional complex disc. When S is an Enoki surface, one obtains a complex disc with finitely...

Morse index of a cyclic polygon

Gaiane Panina, Alena Zhukova (2011)

Open Mathematics

It is known that cyclic configurations of a planar polygonal linkage are critical points of the signed area function. In the paper we give an explicit formula of the Morse index for the signed area of a cyclic configuration. We show that it depends not only on the combinatorics of a cyclic configuration, but also on its metric properties.

Multiplicity of a foliation on projective spaces along an integral curve.

Julio García (1993)

Revista Matemática de la Universidad Complutense de Madrid

We compute the global multiplicity of a 1-dimensional foliation along an integral curve in projective spaces. We give a bound in the way of Poincaré problem for a complete intersection curves. In the projective plane, this bound give us a bound of the degree of non irreducible integral curves in function of the degree of the foliation.

Currently displaying 41 – 58 of 58

Previous Page 3