Mean curvature functions of codimension-one foliations. II.
Gen-Ichi Oshikiri (1991)
Commentarii mathematici Helvetici
Joseph F. Plante (1975)
Annales de l'institut Fourier
This note is based on a theorem of Sacksteder which generalizes a classical result of Denjoy. Using this theorem and results on the existence of invariant measures, new results are obtained concerning minimal sets for groups of diffeomorphisms of the circle and for foliations of codimension one.
Claude Danthony, Arnaldo Nogueira (1990)
Annales scientifiques de l'École Normale Supérieure
Emil Saucan (2013)
Actes des rencontres du CIRM
We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.
C. Bär (1996)
Geometric and functional analysis
Hiroyuki Minakawa (1994/1995)
Séminaire de théorie spectrale et géométrie
B. Hajduk (1981)
Fundamenta Mathematicae
Marco Brunella (1999)
Bulletin de la Société Mathématique de France
Cesar Camacho, Alcides Lins Neto, Paulo Sad (1988)
Publications Mathématiques de l'IHÉS
Th. Peternell (1994)
Mathematische Zeitschrift
Alan H. Durfee, Richard Hain (1988)
Mathematische Annalen
William Pardon (1980)
Mathematische Zeitschrift
Pirouze Djoharian (1985)
Manuscripta mathematica
Peter Greenberg (1985)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Kim, Hee Jung (2006)
Geometry & Topology
Andrew James Bruce (2017)
Archivum Mathematicum
A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including -algebroids and higher Poisson manifolds.
Andrew James Bruce (2020)
Archivum Mathematicum
We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.
D. Carlisle, P. Eccles, S. Hilditch (1985)
Mathematische Zeitschrift
Serge Ochanine (1985)
Bulletin de la Société Mathématique de France
Serge Ochanine (1985)
Bulletin de la Société Mathématique de France