Previous Page 3

Displaying 41 – 59 of 59

Showing per page

Résidus des connexions à singularités et classes caractéristiques

Daniel Lehmann (1981)

Annales de l'institut Fourier

Un “théorème des résidus” est donné, qui exprime les classes caractéristiques réelles de dimension 2 k d’un fibré principal C à l’aide d’une connexion définie seulement au-dessus d’un voisinage du ( 2 k - 1 ) -squelette d’une triangulation de la base. Ce théorème coiffe simultanément la théorie de Chern-Weil, la théorie de l’obstruction modulo torsion, ainsi que des formules du type Riemann-Hurwitz pour les revêtements ramifiés.

Résidus des sous-variétés invariantes d'un feuilletage singulier

Daniel Lehmann (1991)

Annales de l'institut Fourier

Une formule de résidus est demontrée pour les classes caractéristiques de degré suffisamment grand du fibré normal à une sous variété lisse V d’une variété W , invariante relativement à un feuilletage avec singularités dans W . En particulier, dans le cas analytique complexe, et pour les feuilletages dont les feuilles sont de dimension complexe 1, les nombres de Chern du fibre normal à la sous-variété V sont calculés en termes de résidus de Grothendieck, par une formule qui généralise au cas de dimensions...

Resolutions of moduli spaces and homological stability

Oscar Randal-Williams (2016)

Journal of the European Mathematical Society

We describe partial semi-simplicial resolutions of moduli spaces of surfaces with tangential structure. This allows us to prove a homological stability theorem for these moduli spaces, which often improves the known stability ranges and gives explicit stability ranges in many new cases. In each of these cases the stable homology can be identified using the methods of Galatius, Madsen, Tillmann and Weiss.

Riemannian foliations with parallel or harmonic basic forms

Fida El Chami, Georges Habib, Roger Nakad (2015)

Archivum Mathematicum

In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.

Riemannian manifolds not quasi-isometric to leaves in codimension one foliations

Paul A. Schweitzer (2011)

Annales de l’institut Fourier

Every open manifold L of dimension greater than one has complete Riemannian metrics g with bounded geometry such that ( L , g ) is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of ( L , g ) suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of ( L , g ) that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential...

Rigidity and gluing for Morse and Novikov complexes

Octav Cornea, Andrew Ranicki (2003)

Journal of the European Mathematical Society

We obtain rigidity and gluing results for the Morse complex of a real-valued Morse function as well as for the Novikov complex of a circle-valued Morse function. A rigidity result is also proved for the Floer complex of a hamiltonian defined on a closed symplectic manifold ( M , ω ) with c 1 | π 2 ( M ) = [ ω ] | π 2 ( M ) = 0 . The rigidity results for these complexes show that the complex of a fixed generic function/hamiltonian is a retract of the Morse (respectively Novikov or Floer) complex of any other sufficiently C 0 close generic function/hamiltonian....

Currently displaying 41 – 59 of 59

Previous Page 3