Displaying 121 – 140 of 202

Showing per page

The systolic constant of orientable Bieberbach 3-manifolds

Chady El Mir, Jacques Lafontaine (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

A compact manifold is called Bieberbach if it carries a flat Riemannian metric. Bieberbach manifolds are aspherical, therefore the supremum of their systolic ratio, over the set of Riemannian metrics, is finite by a fundamental result of M. Gromov. We study the optimal systolic ratio of compact 3 -dimensional orientable Bieberbach manifolds which are not tori, and prove that it cannot be realized by a flat metric. We also highlight a metric that we construct on one type of such manifolds ( C 2 ) which...

Théorèmes de finitude pour les variétés pfaffiennes

Robert Moussu, Claude Roche (1992)

Annales de l'institut Fourier

On introduit, dans ce travail, une hypothèse sur le spiralement d’une feuille d’un feuilletage analytique réel de codimension un (hypersurface pfaffienne). On en tire des résultats très généraux de finitude du type de Khovanskii. Des exemples précis montrent la généralité de ces hypersurfaces pfaffiennes. Une description complété des bouts de telles variétés en dimension trois est donnée.

Théorèmes de slice et holonomie des feuilletages riemanniens singuliers

Pierre Molino, M. Pierrot (1987)

Annales de l'institut Fourier

Soit ( M , ) un feuilletage riemannien sur une variété compacte; est le feuilletage singulier défini par les adhérences des feuilles ( F , ) le feuilletage induit sur une adhérence générique. On étudie le cas où ( F , ) n’a pas de champ transverse non trivial. Alors l’espace quotient W = M / a une structure naturelle de variété de Sataké, de manière que la projection M W soit un morphisme (de variétés de Sataké) avec pliage autour des adhérences singulières.

Currently displaying 121 – 140 of 202