Displaying 1401 – 1420 of 2026

Showing per page

Rational symplectic field theory over 2 for exact Lagrangian cobordisms

Tobias Ekholm (2008)

Journal of the European Mathematical Society

We construct a version of rational Symplectic Field Theory for pairs ( X , L ) , where X is an exact symplectic manifold, where L X is an exact Lagrangian submanifold with components subdivided into k subsets, and where both X and L have cylindrical ends. The theory associates to ( X , L ) a -graded chain complex of vector spaces over 2 , filtered with k filtration levels. The corresponding k -level spectral sequence is invariant under deformations of ( X , L ) and has the following property: if ( X , L ) is obtained by joining a...

Réalisations de surfaces hyperboliques complètes dans H 3

Jean-Marc Schlenker (1998)

Annales de l'institut Fourier

Soit K 0 ] - 1 , 0 [ ; chaque métrique complète à courbure K 0 sur la sphère à N 1 trous admet une unique réalisation comme métrique induite sur une surface plongée dans H 3 dont le bord à l’infini est une réunion disjointe de cercles. De manière duale, chaque métrique complète à courbure K ˜ 0 ] - , 0 [ sans géodésique fermée de longueur L 2 π se réalise de manière unique comme troisième forme fondamentale d’une surface plongée dont le bord à l’infini est une réunion de cercles.

Regular projectively Anosov flows on three-dimensional manifolds

Masayuki Asaoka (2010)

Annales de l’institut Fourier

We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of T 2 × I -models. We also apply our method to rigidity problems of some group actions.

Regular projectively Anosov flows with compact leaves

Takeo Noda (2004)

Annales de l’institut Fourier

This paper concerns projectively Anosov flows φ t with smooth stable and unstable foliations s and u on a Seifert manifold M . We show that if the foliation s or u contains a compact leaf, then the flow φ t is decomposed into a finite union of models which are defined on T 2 × I and bounded by compact leaves, and therefore the manifold M is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which are incompressible...

Reidemeister-type moves for surfaces in four-dimensional space

Dennis Roseman (1998)

Banach Center Publications

We consider smooth knottings of compact (not necessarily orientable) n-dimensional manifolds in n + 2 (or S n + 2 ), for the cases n=2 or n=3. In a previous paper we have generalized the notion of the Reidemeister moves of classical knot theory. In this paper we examine in more detail the above mentioned dimensions. Examples are given; in particular we examine projections of twist-spun knots. Knot moves are given which demonstrate the triviality of the 1-twist spun trefoil. Another application is a smooth...

Currently displaying 1401 – 1420 of 2026