We consider complex-valued solutions of the Ginzburg–Landau equation on a smooth bounded simply connected domain of , , where is a small parameter. We assume that the Ginzburg–Landau energy verifies the bound (natural in the context) , where is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of , as , is to establish uniform bounds for the gradient, for some . We review some recent techniques developed in...