P-Harmonic obstacle problems.
Let be a closed surface, a compact Lie group, with Lie algebra , and a principal -bundle. In earlier work we have shown that the moduli space of central Yang-Mills connections, with reference to appropriate additional data, is stratified by smooth symplectic manifolds and that the holonomy yields a homeomorphism from onto a certain representation space , in fact a diffeomorphism, with reference to suitable smooth structures and , where denotes the universal central extension of...
We investigate Prékopa-Leindler type inequalities on a Riemannian manifold equipped with a measure with density where the potential and the Ricci curvature satisfy for all , with some . As in our earlier work [14], the argument uses optimal mass transport on , but here, with a special emphasis on its connection with Jacobi fields. A key role will be played by the differential equation satisfied by the determinant of a matrix of Jacobi fields. We also present applications of the method...
We study Finsler metrics with orthogonal invariance. By determining an expression of these Finsler metrics we find a PDE equivalent to these metrics being locally projectively flat. After investigating this PDE we manufacture projectively flat Finsler metrics with orthogonal invariance in terms of error functions.
We introduce O-systems (Definition 3.1) of orthogonal transformations of , and establish correspondences both between equivalence classes of Clifford systems and those of O-systems, and between O-systems and orthogonal multiplications of the form , which allow us to solve the existence problems both for -systems and for umbilical quadratic harmonic morphisms simultaneously. The existence problem for general quadratic harmonic morphisms is then solved by the Splitting Lemma. We also study properties...