Propriétés génériques de l'application de Poincaré et des géodésiques périodiques généralisées
On construit, sur une variété riemannienne de dimension ou , les extensions autoadjointes de la restriction du laplacien aux fonctions nulles au voisinage d’un point de . On calcule explicitement les valeurs propres de .
Dans cet article, nous étudions une famille d’opérateurs auto-adjoints dérivés du laplacien sur une surface de Riemann d’aire finie et ayant au voisinage de l’infini la structure d’un cylindre muni d’une métrique à courbure constante . Après avoir étudié la théorie spectrale de tels opérateurs, nous donnons, comme application, un théorème prévoyant l’absence générique de valeurs propres immergées dans le spectre continu du laplacien de ces surfaces. Nous montrons enfin comment ceci permet de...
In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally...
We define the Bloch spectrum of a quantum graph to be the map that assigns to each element in the deRham cohomology the spectrum of an associated magnetic Schrödinger operator. We show that the Bloch spectrum determines the Albanese torus, the block structure and the planarity of the graph. It determines a geometric dual of a planar graph. This enables us to show that the Bloch spectrum indentifies and completely determines planar -connected quantum graphs.
Consider a flat symplectic manifold , , admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If is an eigenvalue of the symplectic Dirac operator such that is not a symplectic Killing number, then is an eigenvalue of the symplectic Rarita-Schwinger operator.
Let be a complete noncompact manifold of dimension at least 3 and an asymptotically conic metric on , in the sense that compactifies to a manifold with boundary so that becomes a scattering metric on . We study the resolvent kernel and Riesz transform of the operator , where is the positive Laplacian associated to and is a real potential function smooth on and vanishing at the boundary.In our first paper we assumed that has neither zero modes nor a zero-resonance and showed...