Spectral analysis of non-compact manifolds using commutator methods
The spectrum of the Laplacian on manifolds with cylindrical ends consists of continuous spectrum of locally finite multiplicity and embedded eigenvalues. We prove a Weyl-type asymptotic formula for the sum of the number of embedded eigenvalues and the scattering phase. In particular, we obtain the optimal upper bound on the number of embedded eigenvalues less than or equal to , where is the dimension of the manifold.
The spectrum of the Laplace operator on algebraic and semialgebraic subsets in is studied and the number of small eigenvalues is estimated by the degree of .
We show that a bi-invariant metric on a compact connected Lie group is spectrally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-invariant metric on there is a positive integer such that, within a neighborhood of in the class of left-invariant metrics of at most the same volume, is uniquely determined by the first distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case where is simple, can be chosen to be two....
In this paper, we compute the spectrum of the Lichnerowicz laplacian on the symmetric forms of degree 2 on the sphere Sn and the real projective space RPn. This is obtained by generalizing to forms the calculations of the spectrum of the laplacian on fonctions done via restriction of harmonic polynomials on euclidean space.