Page 1 Next

Displaying 1 – 20 of 169

Showing per page

A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces

Yuri Bakhtin, Matilde Martánez (2008)

Annales de l'I.H.P. Probabilités et statistiques

denotes a (compact, nonsingular) lamination by hyperbolic Riemann surfaces. We prove that a probability measure on is harmonic if and only if it is the projection of a measure on the unit tangent bundle T 1 of which is invariant under both the geodesic and the horocycle flows.

A characterization of harmonic sections and a Liouville theorem

Simão Stelmastchuk (2012)

Archivum Mathematicum

Let P ( M , G ) be a principal fiber bundle and E ( M , N , G , P ) an associated fiber bundle. Our interest is to study the harmonic sections of the projection π E of E into M . Our first purpose is give a characterization of harmonic sections of M into E regarding its equivariant lift. The second purpose is to show a version of a Liouville theorem for harmonic sections of π E .

A compactness result for polyharmonic maps in the critical dimension

Shenzhou Zheng (2016)

Czechoslovak Mathematical Journal

For n = 2 m 4 , let Ω n be a bounded smooth domain and 𝒩 L a compact smooth Riemannian manifold without boundary. Suppose that { u k } W m , 2 ( Ω , 𝒩 ) is a sequence of weak solutions in the critical dimension to the perturbed m -polyharmonic maps d d t | t = 0 E m ( Π ( u + t ξ ) ) = 0 with Φ k 0 in ( W m , 2 ( Ω , 𝒩 ) ) * and u k u weakly in W m , 2 ( Ω , 𝒩 ) . Then u is an m -polyharmonic map. In particular, the space of m -polyharmonic maps is sequentially compact for the weak- W m , 2 topology.

A convergence result for finite volume schemes on Riemannian manifolds

Jan Giesselmann (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law u t + g · f ( x , u ) = 0 on a closed Riemannian manifold M. For an initial value in BV(M) we will show that these schemes converge with a h 1 4 convergence rate towards the entropy solution. When M is 1-dimensional the schemes are TVD and we will show that this improves the convergence rate to h 1 2 .

A counterexample to smooth leafwise Hodge decomposition for general foliations and to a type of dynamical trace formulas

Christopher Deninger, Wilhelm Singhof (2001)

Annales de l’institut Fourier

We construct a two dimensional foliation with dense leaves on the Heisenberg nilmanifold for which smooth leafwise Hodge decomposition does not hold. It is also shown that a certain type of dynamical trace formulas relating periodic orbits with traces on leafwise cohomologies does not hold for arbitrary flows.

Currently displaying 1 – 20 of 169

Page 1 Next