On spherical space forms with meta-cyclic fundamental group which are isospectral but not equivariant cobordant
We study the internal stabilization and control of the critical nonlinear Klein-Gordon equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical geometric control condition, we prove exponential decay for some solutions bounded in the energy space but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This profile decomposition, analogous to the one of Bahouri-Gérard [2] on , is performed by taking care of possible...
Given an embeddable manifold and a non-characteristic hypersurface we present a necessary condition for the tangential Cauchy-Riemann operator on to be locally solvable near a point in one of the sidesdetermined by .
This paper is a proceedings version of the ongoing work [20], and has been the object of the talk of the second author at Journées EDP in 2012.In this work we investigate optimal observability properties for wave and Schrödinger equations considered in a bounded open set , with Dirichlet boundary conditions. The observation is done on a subset of Lebesgue measure , where is fixed. We denote by the class of all possible such subsets. Let . We consider first the benchmark problem of maximizing...
In this paper we develop a method to compute the Burns-Epstein invariant of a spherical CR homology sphere, up to an integer, from its holonomy representation. As an application, we give a formula for the Burns-Epstein invariant, modulo an integer, of a spherical CR structure on a Seifert fibered homology sphere in terms of its holonomy representation.
The analytic and wave-front sets of a distribution which is a solution of a regular holonomic differential system are shown to coincide. More generally, we give comparison theorems for solutions of a regular holonomic system of microdifferential equations in various spaces of microfunctions, as a simple extension of a result of Kashiwara.
We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra , including the explicit structure of singular vectors for both and one of its Lie subalgebras , and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as -modules on the Schubert cells in the full flag manifold for .
We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
We give a lower bound for the bottom of the differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.