On Cauchy-Dirichlet problem in half-space for linear integro-differential equations in weighted Hölder spaces.
We consider some classes of Lévy processes for which the estimate of Krylov and Safonov (as in (Potential Anal.17 (2002) 375–388)) fails and thus it is not possible to use the standard iteration technique to obtain a-priori Hölder continuity estimates of harmonic functions. Despite the failure of this method, we obtain some a-priori regularity estimates of harmonic functions for these processes. Moreover, we extend results from (Probab. Theory Related Fields135 (2006) 547–575) and obtain asymptotic...
We establish necessary and sufficient conditions of near-optimality for nonlinear systems governed by forward-backward stochastic differential equations with controlled jump processes (FBSDEJs in short). The set of controls under consideration is necessarily convex. The proof of our result is based on Ekeland's variational principle and continuity in some sense of the state and adjoint processes with respect to the control variable. We prove that under an additional hypothesis, the near-maximum...
We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order with drift and diffusion coefficients , . When , we investigate pathwise uniqueness for this equation. When , we study another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker conditions. We obtain various results, depending on whether or and on whether the driving stable process is symmetric or not. Our assumptions...
Risk-sensitive control problem of regular step Markov processes is considered, firstly when the control parameters are changed at shift times and then in the general case.
We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process (i.e. , where is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process ) and of an arbitrary Lévy process independent of , that the drift coefficient is continuous (but not...
Let X̂=C−Y where Y is a general one-dimensional Lévy process and C an independent subordinator. Consider the times when a new supremum of X̂ is reached by a jump of the subordinator C. We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and X̂ drifts to −∞, we decompose the absolute supremum of X̂ at these times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.
We give necessary and sufficient conditions guaranteeing that the coupling for Lévy processes (with non-degenerate jump part) is successful. Our method relies on explicit formulae for the transition semigroup of a compound Poisson process and earlier results by Mineka and Lindvall–Rogers on couplings of random walks. In particular, we obtain that a Lévy process admits a successful coupling, if it is a strong Feller process or if the Lévy (jump) measure has an absolutely continuous component.
In the present paper optimal time-invariant state feedback controllers are designed for a class of discrete time-varying control systems with Markov jumping parameter and quadratic performance index. We assume that the coefficients have limits as time tends to infinity and the boundary system is absolutely observable and stabilizable. Moreover, following the same line of reasoning, an adaptive controller is proposed in the case when system parameters are unknown but their strongly consistent estimators...
A Levy jump process is a continuous-time, real-valued stochastic process which has independent and stationary increments, with no Brownian component. We study some of the fundamental properties of Levy jump processes and develop (s,S) inventory models for them. Of particular interest to us is the gamma-distributed Levy process, in which the demand that occurs in a fixed period of time has a gamma distribution. We study the relevant properties of these processes, and we develop a quadratically convergent...
A pair trade is a portfolio consisting of a long position in one asset and a short position in another, and it is a widely used investment strategy in the financial industry. Recently, Ekström, Lindberg, and Tysk studied the problem of optimally closing a pair trading strategy when the difference of the two assets is modelled by an Ornstein-Uhlenbeck process. In the present work the model is generalized to also include jumps. More precisely, we assume that the difference between the assets is an...
In this paper we show that a path-wise solution to the following integral equationYt = ∫0t f(Yt) dXt, Y0 = a ∈ Rd,exists under the assumption that Xt is a Lévy process of finite p-variation for some p ≥ 1 and that f is an α-Lipschitz function for some α > p. We examine two types of solution, determined by the solution's behaviour at jump times of the process X, one we call geometric, the other forward. The geometric solution is obtained by adding fictitious time and solving an associated...
Using probabilistic tools, this work states a pointwise convergence of function solutions of the 2-dimensional Boltzmann equation to the function solution of the Landau equation for Maxwellian molecules when the collisions become grazing. To this aim, we use the results of Fournier (2000) on the Malliavin calculus for the Boltzmann equation. Moreover, using the particle system introduced by Guérin and Méléard (2003), some simulations of the solution of the Landau equation will be given. This result...
Using probabilistic tools, this work states a pointwise convergence of function solutions of the 2-dimensional Boltzmann equation to the function solution of the Landau equation for Maxwellian molecules when the collisions become grazing. To this aim, we use the results of Fournier (2000) on the Malliavin calculus for the Boltzmann equation. Moreover, using the particle system introduced by Guérin and Méléard (2003), some simulations of the solution of the Landau equation will be given. This result...