Displaying 181 – 200 of 249

Showing per page

Thinness and non-tangential limit associated to coupled PDE

Allami Benyaiche, Salma Ghiate (2013)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we study the reduit, the thinness and the non-tangential limit associated to a harmonic structure given by coupled partial differential equations. In particular, we obtain such results for biharmonic equation (i.e. 2 ϕ = 0 ) and equations of 2 ϕ = ϕ type.

Three examples of brownian flows on

Yves Le Jan, Olivier Raimond (2014)

Annales de l'I.H.P. Probabilités et statistiques

We show that the only flow solving the stochastic differential equation (SDE) on d X t = 1...

Time-dependent Schrödinger perturbations of transition densities

Krzysztof Bogdan, Wolfhard Hansen, Tomasz Jakubowski (2008)

Studia Mathematica

We construct the fundamental solution of t - Δ y - q ( t , y ) for functions q with a certain integral space-time relative smallness, in particular for those satisfying a relative Kato condition. The resulting transition density is comparable to the Gaussian kernel in finite time, and it is even asymptotically equal to the Gaussian kernel (in small time) under the relative Kato condition. The result is generalized to arbitrary strictly positive and finite time-nonhomogeneous transition densities on measure spaces. We...

Time-homogeneous diffusions with a given marginal at a random time

Alexander M. G. Cox, David Hobson, Jan Obłój (2011)

ESAIM: Probability and Statistics

We solve explicitly the following problem: for a given probability measure μ, we specify a generalised martingale diffusion (Xt) which, stopped at an independent exponential time T, is distributed according to μ. The process (Xt) is specified via its speed measure m. We present two heuristic arguments and three proofs. First we show how the result can be derived from the solution of [Bertoin and Le Jan, Ann. Probab. 20 (1992) 538–548.] to the Skorokhod embedding problem. Secondly, we give a proof...

Time-homogeneous diffusions with a given marginal at a random time

Alexander M.G. Cox, David Hobson, Jan Obłój (2011)

ESAIM: Probability and Statistics

We solve explicitly the following problem: for a given probability measure μ, we specify a generalised martingale diffusion (Xt) which, stopped at an independent exponential time T, is distributed according to μ. The process (Xt) is specified via its speed measure m. We present two heuristic arguments and three proofs. First we show how the result can be derived from the solution of [Bertoin and Le Jan, Ann. Probab.20 (1992) 538–548.] to the Skorokhod embedding problem. Secondly, we give...

Currently displaying 181 – 200 of 249