Displaying 621 – 640 of 838

Showing per page

Robust Parametric Estimation of Branching Processes with a Random Number of Ancestors

Stoimenova, Vessela (2005)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 60J80.The paper deals with a robust parametric estimation in branching processes {Zt(n)} having a random number of ancestors Z0(n) as both n and t tend to infinity (and thus Z0(n) in some sense). The offspring distribution is considered to belong to a discrete analogue of the exponential family – the class of the power series offspring distributions. Robust estimators, based on one and several sample paths, are proposed and studied for all values of the offspring...

Robust recursive estimation of GARCH models

Tomáš Cipra, Radek Hendrych (2018)

Kybernetika

The robust recursive algorithm for the parameter estimation and the volatility prediction in GARCH models is suggested. It seems to be useful for various financial time series, in particular for (high-frequency) log returns contaminated by additive outliers. The proposed procedure can be effective in the risk control and regulation when the prediction of volatility is the main concern since it is capable to distinguish and correct outlaid bursts of volatility. This conclusion is demonstrated by...

Robustness of estimation of first-order autoregressive model under contaminated uniform white noise

Karima Nouali (2009)

Discussiones Mathematicae Probability and Statistics

The first-order autoregressive model with uniform innovations is considered. In this paper, we study the bias-robustness and MSE-robustness of modified maximum likelihood estimator of parameter of the model against departures from distribution of white noise. We used the generalized Beta distribution to describe these departures.

Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion

Luís Ramos (2010)

Discussiones Mathematicae Probability and Statistics

When a diffusion is ergodic its transition density converges to its invariant density, see Durrett (1998). This convergence enabled us to introduce a sample partitioning technique that gives in each sub-sample, maximum likelihood estimators. The averages of these being a natural choice as estimators. To compare our estimators with the optimal we obtained from martingale estimating functions, see Sørensen (1998), we used the Ornstein-Uhlenbeck process for which exact simulations can be carried out....

Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion

Sandie Souchet Samos (2010)

ESAIM: Probability and Statistics

Let YT = (Yt)t∈[0,T] be a real ergodic diffusion process which drift depends on an unkown parameter θ 0 p . Our aim is to estimate θ0 from a discrete observation of the process YT, (Ykδ)k=0,n, for a fixed and small δ, as T = nδ goes to infinity. For that purpose, we adapt the Generalized Method of Moments (see Hansen) to the anticipative and approximate discrete-time trapezoidal scheme, and then to Simpson's. Under some general assumptions, the trapezoidal scheme (respectively Simpson's scheme)...

Seasonal time series with missing observations

Tomáš Ratinger (1996)

Applications of Mathematics

Popular exponential smoothing methods dealt originally only with equally spaced observations. When time series contains gaps, smoothing constants have to be adjusted. Cipra et al., following Wright’s approach of irregularly spaced observations, have suggested ad hoc modification of smoothing constants for the Holt-Winters smoothing method. In this article the fact that the underlying model of the Holt-Winters method is a certain seasonal ARIMA is used. Minimum mean square error smoothing constants...

Second-order asymptotic expansion for a non-synchronous covariation estimator

Arnak Dalalyan, Nakahiro Yoshida (2011)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition...

Security price modelling by a binomial tree

Remigijus Leipus, Alfredas Račkauskas (1999)

Applicationes Mathematicae

We consider multidimensional tree-based models of arbitrage-free and path-independent security markets. We assume that no riskless investment exists. Contingent claims pricing and hedging problems in such a market are studied.

Selección de la ventana en suavización tipo núcleo de la parte no paramétrica de un modelo parcialmente lineal con errores autorregresivos.

Germán Aneiros Pérez (2000)

Qüestiió

Supongamos que yi = ζiT β + m(ti) + εi, i = 1, ..., n, donde el vector (p x 1) β y la función m(·) son desconocidos, y los errores εi provienen de un proceso autorregresivo de orden uno (AR(1)) estacionario. Discutimos aquí el problema de la selección del parámetro ventana de un estimador tipo núcleo de la función m(·) basado en un estimador Generalizado de Mínimos Cuadrados de β. Obtenemos la expresión asintótica de una ventana óptima y proponemos un método para estimarla, de modo que dé lugar...

Sensitivity analysis in linear models

Shuangzhe Liu, Tiefeng Ma, Yonghui Liu (2016)

Special Matrices

In this work, we consider the general linear model or its variants with the ordinary least squares, generalised least squares or restricted least squares estimators of the regression coefficients and variance. We propose a newly unified set of definitions for local sensitivity for both situations, one for the estimators of the regression coefficients, and the other for the estimators of the variance. Based on these definitions, we present the estimators’ sensitivity results.We include brief remarks...

Currently displaying 621 – 640 of 838