Displaying 421 – 440 of 485

Showing per page

Stability of flat interfaces during semidiscrete solidification

Andreas Veeser (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The stability of flat interfaces with respect to a spatial semidiscretization of a solidification model is analyzed. The considered model is the quasi-static approximation of the Stefan problem with dynamical Gibbs–Thomson law. The stability analysis bases on an argument developed by Mullins and Sekerka for the undiscretized case. The obtained stability properties differ from those with respect to the quasi-static model for certain parameter values and relatively coarse meshes. Moreover,...

Stabilized Galerkin methods for magnetic advection

Holger Heumann, Ralf Hiptmair (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and -conforming finite elements.

Stable discretization of a diffuse interface model for liquid-vapor flows with surface tension

Malte Braack, Andreas Prohl (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The isothermal Navier–Stokes–Korteweg system is used to model dynamics of a compressible fluid exhibiting phase transitions between a liquid and a vapor phase in the presence of capillarity effects close to phase boundaries. Standard numerical discretizations are known to violate discrete versions of inherent energy inequalities, thus leading to spurious dynamics of computed solutions close to static equilibria (e.g., parasitic currents). In this work, we propose a time-implicit discretization of...

Staggered schemes for all speed flows

Raphaèle Herbin, Walid Kheriji, Jean-Claude Latche (2012)

ESAIM: Proceedings

We review in this paper a class of schemes for the numerical simulation of compressible flows. In order to ensure the stability of the discretizations in a wide range of Mach numbers and introduce sufficient decoupling for the numerical resolution, we choose to implement and study pressure correction schemes on staggered meshes. The implicit version of the schemes is also considered for the theoretical study. We give both algorithms for the barotropic Navier-Stokes equations, for the full Navier-Stokes...

Stick-slip transition capturing by using an adaptive finite element method

Nicolas Roquet, Pierre Saramito (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The numerical modeling of the fully developed Poiseuille flow of a newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is based on the...

Stick-slip transition capturing by using an adaptive finite element method

Nicolas Roquet, Pierre Saramito (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The numerical modeling of the fully developed Poiseuille flow of a Newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is based on the...

Superconvergence estimates of finite element methods for American options

Qun Lin, Tang Liu, Shu Hua Zhang (2009)

Applications of Mathematics

In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. 39 (2001), 834–857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and interpolation...

Superconvergence of mixed finite element semi-discretizations of two time-dependent problems

Jan Brandts (1999)

Applications of Mathematics

We will show that some of the superconvergence properties for the mixed finite element method for elliptic problems are preserved in the mixed semi-discretizations for a diffusion equation and for a Maxwell equation in two space dimensions. With the help of mixed elliptic projection we will present estimates global and pointwise in time. The results for the Maxwell equations form an extension of existing results. For both problems, our results imply that post-processing and a posteriori error estimation...

Symmetric interior penalty discontinuous Galerkin method for nonlinear fully coupled quasi-static thermo-poroelasticity problems

Fan Chen, Ming Cui, Chenguang Zhou (2025)

Applications of Mathematics

We propose a symmetric interior penalty discontinuous Galerkin (DG) method for nonlinear fully coupled quasi-static thermo-poroelasticity problems. Firstly, a fully implicit nonlinear discrete scheme is constructed by adopting the DG method for the spatial approximation and the backward Euler method for the temporal discretization. Subsequently, the existence and uniqueness of the solution of the numerical scheme is proved, and then we derive the a priori error estimate for the three variables,...

Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems

Serge Piperno (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exactly conserved. However, the stability limit of the methods, related to the smallest elements in the mesh,...

Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems

Serge Piperno (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exactly conserved. However, the stability limit of the methods, related to the smallest elements in the mesh,...

Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations

Ludovic Moya (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order...

Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗

Ludovic Moya (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order...

Currently displaying 421 – 440 of 485