Approximation numérique de certaines équations paraboliques non linéaires
In this paper we study an approximation scheme for a class of control problems involving an ordinary control v, an impulsive control u and its derivative . Adopting a space-time reparametrization of the problem which adds one variable to the state space we overcome some difficulties connected to the presence of . We construct an approximation scheme for that augmented system, prove that it converges to the value function of the augmented problem and establish an error estimates in L∞ for this approximation....
We illustrate how some interesting new variational principles can be used for the numerical approximation of solutions to certain (possibly degenerate) parabolic partial differential equations. One remarkable feature of the algorithms presented here is that derivatives do not enter into the variational principles, so, for example, discontinuous approximations may be used for approximating the heat equation. We present formulae for computing a Wasserstein metric which enters into the variational...
We propose and analyze numerical schemes for viscosity solutions of time-dependent Hamilton-Jacobi equations on the Heisenberg group. The main idea is to construct a grid compatible with the noncommutative group geometry. Under suitable assumptions on the data, the Hamiltonian and the parameters for the discrete first order scheme, we prove that the error between the viscosity solution computed at the grid nodes and the solution of the discrete problem behaves like where h is the mesh step. Such...
The numerical solutions of stochastic partial differential equations of Itô type with time white noise process, using stable stochastic explicit finite difference methods are considered in the paper. Basically, Stochastic Alternating Direction Explicit (SADE) finite difference schemes for solving stochastic time dependent advection-diffusion and diffusion equations are represented and the main properties of these stochastic numerical methods, e.g. stability, consistency and convergence are analyzed....
In the reliability theory, the availability of a component, characterized by non constant failure and repair rates, is obtained, at a given time, thanks to the computation of the marginal distributions of a semi-Markov process. These measures are shown to satisfy classical transport equations, the approximation of which can be done thanks to a finite volume method. Within a uniqueness result for the continuous solution, the convergence of the numerical scheme is then proven in the weak measure sense,...
In the reliability theory, the availability of a component, characterized by non constant failure and repair rates, is obtained, at a given time, thanks to the computation of the marginal distributions of a semi-Markov process. These measures are shown to satisfy classical transport equations, the approximation of which can be done thanks to a finite volume method. Within a uniqueness result for the continuous solution, the convergence of the numerical scheme is then proven in the weak measure...
We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.
We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.
We consider in all curvature equation where G is a nondecreasing function and curv(u) is the curvature of the level line passing by x. These equations are invariant with respect to any contrast change u → g(u), with g nondecreasing. Consider the contrast invariant operator . A Matheron theorem asserts that all contrast invariant operator T can be put in a form . We show the asymptotic equivalence of both formulations. More precisely, we show that all curvature equations can be obtained...
This paper is devoted to the study of the approximation problem for the abstract hyperbolic differential equation u'(t) = A(t)u(t) for t ∈ [0,T], where A(t):t ∈ [0,T] is a family of closed linear operators, without assuming the density of their domains.
The paper deals with an initial problem of a parabolic variational inequality whichcontains a nonlinear elliptic form having a potential , which is twice -differentiable at arbitrary . This property of makes it possible to prove convergence of an approximate solution defined by a linearized scheme which is fully discretized - in space by the finite elements method and in time by a one-step finite-difference method. Strong convergence of the approximate solution is proved without any regularity...