Displaying 41 – 60 of 1395

Showing per page

A heat approximation

Miroslav Dont (2000)

Applications of Mathematics

The Fourier problem on planar domains with time variable boundary is considered using integral equations. A simple numerical method for the integral equation is described and the convergence of the method is proved. It is shown how to approximate the solution of the Fourier problem and how to estimate the error. A numerical example is given.

A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model

David J. Knezevic, Endre Süli (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We examine a heterogeneous alternating-direction method for the approximate solution of the FENE Fokker–Planck equation from polymer fluid dynamics and we use this method to solve a coupled (macro-micro) Navier–Stokes–Fokker–Planck system for dilute polymeric fluids. In this context the Fokker–Planck equation is posed on a high-dimensional domain and is therefore challenging from a computational point of view. The heterogeneous alternating-direction scheme combines a spectral Galerkin method for...

A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids

T. Haga, H. Gao, Z. J. Wang (2011)

Mathematical Modelling of Natural Phenomena

The newly developed unifying discontinuous formulation named the correction procedure via reconstruction (CPR) for conservation laws is extended to solve the Navier-Stokes equations for 3D mixed grids. In the current development, tetrahedrons and triangular prisms are considered. The CPR method can unify several popular high order methods including the discontinuous Galerkin and the spectral volume methods into a more efficient differential form....

A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport

Manuel Jesús Castro Díaz, Enrique Domingo Fernández-Nieto, Tomás Morales de Luna, Gladys Narbona-Reina, Carlos Parés (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-negativity...

A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport

Manuel Jesús Castro Díaz, Enrique Domingo Fernández-Nieto, Tomás Morales de Luna, Gladys Narbona-Reina, Carlos Parés (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different...

A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems

Thierry Gallouët, Jean-Marc Hérard, Nicolas Seguin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density and additional...

A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems

Thierry Gallouët, Jean-Marc Hérard, Nicolas Seguin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density...

A hyperbolic model for convection-diffusion transport problems in CFD: numerical analysis and applications.

Héctor Gómez, Ignasi Colominas, Fermín L. Navarrina, Manuel Casteleiro (2008)

RACSAM

In this paper we present a numerical study of the hyperbolic model for convection-diffusion transport problems that has been recently proposed by the authors. This model avoids the infinite speed paradox, inherent to the standard parabolic model and introduces a new parameter called relaxation time. This parameter plays the role of an “inertia” for the movement of the pollutant. The analysis presented herein is twofold: first, we perform an accurate study of the 1D steady-state equations and its...

A hyperbolic model of chemotaxis on a network: a numerical study

G. Bretti, R. Natalini, M. Ribot (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we deal with a semilinear hyperbolic chemotaxis model in one space dimension evolving on a network, with suitable transmission conditions at nodes. This framework is motivated by tissue-engineering scaffolds used for improving wound healing. We introduce a numerical scheme, which guarantees global mass densities conservation. Moreover our scheme is able to yield a correct approximation of the effects of the source term at equilibrium. Several numerical tests are presented to show the...

A linear extrapolation method for a general phase relaxation problem

Xun Jiang (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This paper examines a linear extrapolation time-discretization of a 2 D phase relaxation model with temperature dependent convection and reaction. The model consists of a diffusion-advection PDE for temperature and an ODE with double obstacle ± 1 for phase variable. Under a stability constraint, this scheme is shown to converge with optimal orders O τ log τ 1 / 2 for temperature and enthalpy, and O τ 1 / 2 log τ 1 / 2 for heat flux as time-step τ 0 .

A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model

F. M. Guillén-González, J. V. Gutiérrez-Santacreu (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–Leslie problem...

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived...

A Mathematical Model of Cancer Stem Cell Lineage Population Dynamics with Mutation Accumulation and Telomere Length Hierarchies

G. Kapitanov (2012)

Mathematical Modelling of Natural Phenomena

There is evidence that cancer develops when cells acquire a sequence of mutations that alter normal cell characteristics. This sequence determines a hierarchy among the cells, based on how many more mutations they need to accumulate in order to become cancerous. When cells divide, they exhibit telomere loss and differentiate, which defines another cell hierarchy, on top of which is the stem cell. We propose a mutation-generation model, which combines...

Currently displaying 41 – 60 of 1395