Displaying 41 – 60 of 105

Showing per page

Numerical approximations of parabolic differential functional equations with the initial boundary conditions of the Neumann type

Roman Ciarski (2004)

Annales Polonici Mathematici

The aim of this paper is to present a numerical approximation for quasilinear parabolic differential functional equations with initial boundary conditions of the Neumann type. The convergence result is proved for a difference scheme with the property that the difference operators approximating mixed derivatives depend on the local properties of the coefficients of the differential equation. A numerical example is given.

Numerical Approximations of the Dynamical System Generated by Burgers’ Equation with Neumann–Dirichlet Boundary Conditions

Edward J. Allen, John A. Burns, David S. Gilliam (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Using Burgers’ equation with mixed Neumann–Dirichlet boundary conditions, we highlight a problem that can arise in the numerical approximation of nonlinear dynamical systems on computers with a finite precision floating point number system. We describe the dynamical system generated by Burgers’ equation with mixed boundary conditions, summarize some of its properties and analyze the equilibrium states for finite dimensional dynamical systems that are generated by numerical approximations of this...

Numerical Approximations of the Relative Rearrangement: The piecewise linear case. Application to some Nonlocal Problems

Jean-Michel Rakotoson, Maria Luisa Seoane (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We first prove an abstract result for a class of nonlocal problems using fixed point method. We apply this result to equations revelant from plasma physic problems. These equations contain terms like monotone or relative rearrangement of functions. So, we start the approximation study by using finite element to discretize this nonstandard quantities. We end the paper by giving a numerical resolution of a model containing those terms.

Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime

Rémi Carles, Bijan Mohammadi (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple...

Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime

Rémi Carles, Bijan Mohammadi (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple...

Numerical boundary layers for hyperbolic systems in 1-D

Claire Chainais-Hillairet, Emmanuel Grenier (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.

Numerical boundary layers for hyperbolic systems in 1-D

Claire Chainais-Hillairet, Emmanuel Grenier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039–1064; Pego and Quintero, Physica D 132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations16 (2003) 1039–1064; Pego and Quintero, Physica D132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Numerical controllability of the wave equation through primal methods and Carleman estimates

Nicolae Cîndea, Enrique Fernández-Cara, Arnaud Münch (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with the numerical computation of boundary null controls for the 1D wave equation with a potential. The goal is to compute approximations of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. We do not apply in this work the usual duality arguments but explore instead a direct approach in the framework of global Carleman estimates. More precisely, we consider the control that minimizes over the class of admissible null...

Numerical evidence of nonuniqueness in the evolution of vortex sheets

Milton C. Lopes Filho, John Lowengrub, Helena J. Nussenzveig Lopes, Yuxi Zheng (2006)

ESAIM: Mathematical Modelling and Numerical Analysis


We consider a special configuration of vorticity that consists of a pair of externally tangent circular vortex sheets, each having a circularly symmetric core of bounded vorticity concentric to the sheet, and each core precisely balancing the vorticity mass of the sheet. This configuration is a stationary weak solution of the 2D incompressible Euler equations. We propose to perform numerical experiments to verify that certain approximations of this flow configuration converge to a non-stationary...

Numerical investigation of a new class of waves in an open nonlinear heat-conducting medium

Milena Dimova, Stefka Dimova, Daniela Vasileva (2013)

Open Mathematics

The paper contributes to the problem of finding all possible structures and waves, which may arise and preserve themselves in the open nonlinear medium, described by the mathematical model of heat structures. A new class of self-similar blow-up solutions of this model is constructed numerically and their stability is investigated. An effective and reliable numerical approach is developed and implemented for solving the nonlinear elliptic self-similar problem and the parabolic problem. This approach...

Numerical methods for fourth order nonlinear degenerate diffusion problems

Jürgen Becker, Günther Grün, Martin Lenz, Martin Rumpf (2002)

Applications of Mathematics

Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant),...

Numerical methods for phase transition problems

Claudio Verdi (1998)

Bollettino dell'Unione Matematica Italiana

Nel presente articolo si illustrano alcuni dei principali metodi numerici per l'approssimazione di modelli matematici legati ai fenomeni di transizione di fase. Per semplificare e contenere l'esposizione ci siamo limitati a discutere con un certo dettaglio i metodi più recenti, presentandoli nel caso di problemi modello, quali il classico problema di Stefan e l'evoluzione di superficie per curvatura media, solo accennando alle applicazioni e modelli più generali.

Currently displaying 41 – 60 of 105