Displaying 921 – 940 of 1396

Showing per page

On discontinuous Galerkin methods for nonlinear convection-diffusion problems and compressible flow

Vít Dolejší, Miloslav Feistauer, Christoph Schwab (2002)

Mathematica Bohemica

The paper is concerned with the discontinuous Galerkin finite element method for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion problems with emphasis on applications to the simulation of compressible flows. We discuss two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a generalization of the combined finite volume—finite element method. Its advantage is the use of only one mesh (in contrast to the combined finite volume—finite...

On evolution Galerkin methods for the Maxwell and the linearized Euler equations

Mária Lukáčová-Medviďová, Jitka Saibertová, Gerald G. Warnecke, Yousef Zahaykah (2004)

Applications of Mathematics

The subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical...

On finite element approximation of flow induced vibration of elastic structure

Valášek, Jan, Sváček, Petr, Horáček, Jaromír (2017)

Programs and Algorithms of Numerical Mathematics

In this paper the fluid-structure interaction problem is studied on a simplified model of the human vocal fold. The problem is mathematically described and the arbitrary Lagrangian-Eulerian method is applied in order to treat the time dependent computational domain. The viscous incompressible fluid flow and linear elasticity models are considered. The fluid flow and the motion of elastic body is approximated with the aid of finite element method. An attention is paid to the applied stabilization...

On finite element approximation of fluid structure interaction by Taylor-Hood and Scott-Vogelius elements

Vacek, Karel, Sváček, Petr (2023)

Programs and Algorithms of Numerical Mathematics

This paper focuses on mathematical modeling and finite element simulation of fluid-structure interaction problems. A simplified problem of two-dimensional incompressible fluid flow interacting with a rigid structure, whose motion is described with one degree of freedom, is considered. The problem is mathematically described and numerically approximated using the finite element method. Two possibilities, namely Taylor-Hood and Scott-Vogelius elements are presented and implemented. Finally, numerical...

On fully practical finite element approximations of degenerate Cahn-Hilliard systems

John W. Barrett, James F. Blowey, Harald Garcke (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments with...

On fully practical finite element approximations of degenerate Cahn-Hilliard systems

John W. Barrett, James F. Blowey, Harald Garcke (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments...

On Jeffreys model of heat conduction

Maksymilian Dryja, Krzysztof Moszyński (2001)

Applicationes Mathematicae

The Jeffreys model of heat conduction is a system of two partial differential equations of mixed hyperbolic and parabolic character. The analysis of an initial-boundary value problem for this system is given. Existence and uniqueness of a weak solution of the problem under very weak regularity assumptions on the data is proved. A finite difference approximation of this problem is discussed as well. Stability and convergence of the discrete problem are proved.

On Large Eddy Simulation and Variational Multiscale Methods in the numerical simulation of turbulent incompressible flows

Volker John (2006)

Applications of Mathematics

Numerical simulation of turbulent flows is one of the great challenges in Computational Fluid Dynamics (CFD). In general, Direct Numerical Simulation (DNS) is not feasible due to limited computer resources (performance and memory), and the use of a turbulence model becomes necessary. The paper will discuss several aspects of two approaches of turbulent modeling—Large Eddy Simulation (LES) and Variational Multiscale (VMS) models. Topics which will be addressed are the detailed derivation of these...

On numerical solution of compressible flow in time-dependent domains

Miloslav Feistauer, Jaromír Horáček, Václav Kučera, Jaroslava Prokopová (2012)

Mathematica Bohemica

The paper deals with numerical simulation of a compressible flow in time-dependent 2D domains with a special interest in medical applications to airflow in the human vocal tract. The mathematical model of this process is described by the compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary Lagrangian-Eulerian (ALE) method is used. The discontinuous Galerkin finite element method (DGFEM) is used for the space semidiscretization of the governing equations...

Currently displaying 921 – 940 of 1396