The method of normal splines for linear implicit differential equations of second order.
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We...
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem....
The existence of a periodic solution of a nonlinear equation is proved. The theory developed may be used to prove the existence of a periodic solution of the variational formulation of the Navier-Stokes equations or the equations of magnetohydrodynamics. The proof of the main existence theorem is based on Rothe method in combination with the Galerkin method, using the Brouwer fixed point theorem.
We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in and...
The projection-algebraic approach of the Calogero type for discrete approximations of linear and nonlinear differential operator equations in Banach spaces is studied. The solution convergence and realizability properties of the related approximating schemes are analyzed. For the limiting-dense approximating scheme of linear differential operator equations a new convergence theorem is stated. In the case of nonlinear differential operator equations the effective convergence conditions for the approximated...
We consider an initial-boundary value problem for a generalized 2D time-dependent Schrödinger equation (with variable coefficients) on a semi-infinite strip. For the Crank–Nicolson-type finite-difference scheme with approximate or discrete transparent boundary conditions (TBCs), the Strang-type splitting with respect to the potential is applied. For the resulting method, the unconditional uniform in time L2-stability is proved. Due to the splitting, an effective direct algorithm using FFT is developed...
In this paper we first study the stability of Ritz-Volterra projection (see below) and its maximum norm estimates, and then we use these results to derive some error estimates for finite element methods for parabolic integro-differential equations.
The Tree-Grid method is a novel explicit convergent scheme for solving stochastic control problems or Hamilton-Jacobi-Bellman equations with one space dimension. One of the characteristics of the scheme is that the stencil size is dependent on space, control and possibly also on time. Because of the dependence on the control variable, it is not trivial to solve the optimization problem inside the method. Recently, this optimization part was solved by brute-force testing of all permitted controls....
This paper deals with the linear approximation scheme to approximate a singular parabolic problem: the two-phase Stefan problem on a domain consisting of two components with imperfect contact. The results of some numerical experiments and comparisons are presented. The method was used to determine the temperature of steel in the process of continuous casting.
When applied to the linear advection problem in dimension two, the upwind finite volume method is a non consistent scheme in the finite differences sense but a convergent scheme. According to our previous paper [Bouche et al., SIAM J. Numer. Anal.43 (2005) 578–603], a sufficient condition in order to complete the mathematical analysis of the finite volume scheme consists in obtaining an estimation of order p, less or equal to one, of a quantity that depends only on the mesh and on the advection ...