Displaying 501 – 520 of 1411

Showing per page

Domain optimization in 3 D -axisymmetric elliptic problems by dual finite element method

Ivan Hlaváček (1990)

Aplikace matematiky

An axisymmetric second order elliptic problem with mixed boundary conditions is considered. The shape of the domain has to be found so as to minimize a cost functional, which is given in terms of the cogradient of the solution. A new dual finite element method is used for approximate solutions. The existence of an optimal domain is proven and a convergence analysis presented.

Domain optimization in axisymmetric elliptic boundary value problems by finite elements

Ivan Hlaváček (1988)

Aplikace matematiky

An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces.

Double greedy algorithms: Reduced basis methods for transport dominated problems

Wolfgang Dahmen, Christian Plesken, Gerrit Welper (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is the construction of computationally feasible “tight” surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated...

Dual Combined Finite Element Methods For Non-Newtonian Flow (II) Parameter-Dependent Problem

Pingbing Ming, Zhong-ci Shi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This is the second part of the paper for a Non-Newtonian flow. Dual combined Finite Element Methods are used to investigate the little parameter-dependent problem arising in a nonliner three field version of the Stokes system for incompressible fluids, where the viscosity obeys a general law including the Carreau's law and the Power law. Certain parameter-independent error bounds are obtained which solved the problem proposed by Baranger in [4] in a unifying way. We also give some stable finite...

Dual finite element analysis for elliptic problems with obstacles on the boundary. I

Ivan Hlaváček (1977)

Aplikace matematiky

For an elliptic model problem with non-homogeneous unilateral boundary conditions, two dual variational formulations are presented and justified on the basis of a saddle point theorem. Using piecewise linear finite element models on the triangulation of the given domain, dual numerical procedures are proposed. By means of one-sided approximations, some a priori error estimates are proved, assuming that the solution is sufficiently smooth. A posteriori error estimates and two-sided bounds for the...

Dual finite element analysis of axisymmetric elliptic problems with an absolute term

Ivan Hlaváček (1991)

Applications of Mathematics

A model second order elliptic equation in cylindrical coordinates with mixed boundary conditions is considered. A dual variational formulation is employed to calculate the cogradient of the solution directly. Approximations are defined on the basis of standard finite elements spaces. Convergence analysis and some a posteriori error estimates are presented.

Dual-mixed finite element methods for the Navier-Stokes equations

Jason S. Howell, Noel J. Walkington (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.

Dynamic frictional contact of a viscoelastic beam

Marco Campo, José R. Fernández, Georgios E. Stavroulakis, Juan M. Viaño (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study the dynamic frictional contact of a viscoelastic beam with a deformable obstacle. The beam is assumed to be situated horizontally and to move, in both horizontal and tangential directions, by the effect of applied forces. The left end of the beam is clamped and the right one is free. Its horizontal displacement is constrained because of the presence of a deformable obstacle, the so-called foundation, which is modelled by a normal compliance contact condition. The effect...

Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd

M. Aurada, M. Feischl, J. Kemetmüller, M. Page, D. Praetorius (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the solution of second order elliptic PDEs in Rd with inhomogeneous Dirichlet data by means of an h–adaptive FEM with fixed polynomial order p ∈ N. As model example serves the Poisson equation with mixed Dirichlet–Neumann boundary conditions, where the inhomogeneous Dirichlet data are discretized by use of an H1 / 2–stable projection, for instance, the L2–projection for p = 1 or the Scott–Zhang projection for general p ≥ 1. For error estimation, we use a residual error estimator which...

Edge finite elements for the approximation of Maxwell resolvent operator

Daniele Boffi, Lucia Gastaldi (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the L 2 norm for the sequence of discrete operators....

Edge finite elements for the approximation of Maxwell resolvent operator

Daniele Boffi, Lucia Gastaldi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the L2 norm for the sequence of discrete...

Currently displaying 501 – 520 of 1411