Orbital dynamics of a simple solar photon thruster.
Evolution of cell populations can be described with dissipative particle dynamics, where each cell moves according to the balance of forces acting on it, or with partial differential equations, where cell population is considered as a continuous medium. We compare these two approaches for some model examples
We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses...
A classical mechanics Lagrangian system with even Lagrangian is considered. The configuration space is a cylinder . A large class of nonhomotopic periodic solutions has been found.
Sulla base di una teoria generalizzata di Meccanica Classica per il problema dei Due Corpi, recentemente formulata dall'autore, si considera la questione della precessione del perielio dei pianeti, assente nel caso Newtoniano. Si mostra come la descrizione di questo fenomeno in tale teoria generalizzata è sostanzialmente equivalente a quella offerta dalla Relatività Generale.