Displaying 181 – 200 of 442

Showing per page

Lagrangians and hamiltonians on affine bundles and higher order geometry

Paul Popescu, Marcela Popescu (2007)

Banach Center Publications

The higher order bundles defined by an anchored bundle are constructed as a natural extension of the higher tangent spaces of a manifold. We prove that a hyperregular lagrangian (hyperregular affine hamiltonian) is a linearizable sub-lagrangian (affine sub-hamiltonian) on a suitable Legendre triple.

Levi-flat invariant sets of holomorphic symplectic mappings

Xianghong Gong (2001)

Annales de l’institut Fourier

We classify four families of Levi-flat sets which are defined by quadratic polynomials and invariant under certain linear holomorphic symplectic maps. The normalization of Levi- flat real analytic sets is studied through the technique of Segre varieties. The main purpose of this paper is to apply the Levi-flat sets to the study of convergence of Birkhoff's normalization for holomorphic symplectic maps. We also establish some relationships between Levi-flat invariant sets...

Lie algebroids and mechanics

Paulette Libermann (1996)

Archivum Mathematicum

We give a formulation of certain types of mechanical systems using the structure of groupoid of the tangent and cotangent bundles to the configuration manifold M ; the set of units is the zero section identified with the manifold M . We study the Legendre transformation on Lie algebroids.

Currently displaying 181 – 200 of 442