Displaying 401 – 420 of 442

Showing per page

The shadowing chain lemma for singular Hamiltonian systems involving strong forces

Marek Izydorek, Joanna Janczewska (2012)

Open Mathematics

We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 {ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.

The symmetry reduction of variational integrals

Václav Tryhuk, Veronika Chrastinová (2018)

Mathematica Bohemica

The Routh reduction of cyclic variables in the Lagrange function and the Jacobi-Maupertuis principle of constant energy systems are generalized. The article deals with one-dimensional variational integral subject to differential constraints, the Lagrange variational problem, that admits the Lie group of symmetries. Reduction to the orbit space is investigated in the absolute sense relieved of all accidental structures. In particular, the widest possible coordinate-free approach to the underdetermined...

The symmetry reduction of variational integrals, complement

Veronika Chrastinová, Václav Tryhuk (2018)

Mathematica Bohemica

Some open problems appearing in the primary article on the symmetry reduction are solved. A new and quite simple coordinate-free definition of Poincaré-Cartan forms and the substance of divergence symmetries (quasisymmetries) are clarified. The unbeliavable uniqueness and therefore the global existence of Poincaré-Cartan forms without any uncertain multipliers for the Lagrange variational problems are worth extra mentioning.

Variational calculus on Lie algebroids

Eduardo Martínez (2008)

ESAIM: Control, Optimisation and Calculus of Variations

It is shown that the Lagrange's equations for a Lagrangian system on a Lie algebroid are obtained as the equations for the critical points of the action functional defined on a Banach manifold of curves. The theory of Lagrangian reduction and the relation with the method of Lagrange multipliers are also studied.

Currently displaying 401 – 420 of 442