Nonlocal problems for the equations of motion of Kelvin-Voigt fluids
We present two sufficient conditions for nonconvolution kernels to be of positive type. We apply the results to obtain stability for one-dimensional models of chemically reacting viscoelastic materials.
In this note we give an overview of recent results in the theory of electrorheological fluids and the theory of function spaces with variable exponents. Moreover, we present a detailed and self-contained exposition of shifted -functions that are used in the studies of generalized Newtonian fluids and problems with -structure.
Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.
Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.
We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple...
We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple...
Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant),...
This work presents the numerical solution of laminar incompressible viscous flow in a three dimensional branching channel with circular cross section for generalized Newtonian fluids. This model can be generalized by cross model in shear thinning meaning. The governing system of equations is based on the system of balance laws for mass and momentum. Numerical tests are performed on a three dimensional geometry, the branching channel with one entrance and two outlet parts. Numerical solution of the...
The aim of this paper is to describe the numerical results of numerical modelling of steady flows of laminar incompressible viscous and viscoelastic fluids. The mathematical models are Newtonian and Oldroyd-B models. Both models can be generalized by cross model in shear thinning meaning. Numerical tests are performed on three dimensional geometry, a branched channel with one entrance and two output parts. Numerical solution of the described models is based on cell-centered finite volume method...
In this paper we apply a domain decomposition method to approach the solution of a non-Newtonian viscoelastic Oldroyd-B model. The numerical scheme is based on a fixed-point argument applied to the original non-linear system of partial differential equations decoupled into a Navier-Stokes system and a tensorial transport equation. Using a modified Schwarz algorithm, involving block preconditioners for the Navier-Stokes equations, the decoupled problems are solved iteratively. Numerical simulations...
This work deals with the numerical solution of generalized Newtonian and Oldroyd-B fluids flow. The governing system of equations is based on the system of balance laws for mass and momentum for incompressible laminar viscous and viscoelastic fluids. Two different definition of the stress tensor are considered. For viscous case Newtonian model is used. For the viscoelastic case Oldroyd-B model is tested. Both presented models can be generalized. In this case the viscosity is defined as a shear rate...
The aim of this work is to present numerical results of non-Newtonian fluid flow in a model of bypass. Different angle of a connection between narrowed channel and the bypass graft is considered. Several rheology viscosity models were used for the non-Newtonian fluid, namely the modified Cross model and the Carreau-Yasuda model. The results of non-Newtonian fluid flow are compared to the results of Newtonian fluid. The fundamental system of equations is the generalized system of Navier-Stokes equations...
The motion of a three-dimensional glacier is considered. Ice is modeled as an incompressible non-Newtonian fluid. At each time step, given the shape of the glacier, a nonlinear elliptic system has to be solved in order to obtain the two components of the horizontal velocity field. Then, the shape of the glacier is updated by solving a transport equation. Finite element techniques are used to compute the velocity field and to solve the transport equation. Numerical results are compared to experiments...
In this work we present new numerical methods to simulate the mechanics of head-tape magnetic storage devices. The elastohydrodynamic problem is formulated in terms of a coupled system which is governed by a nonlinear compressible Reynolds equation for the air pressure over the head, and a rod model for the tape displacement. A fixed point algorithm between the solutions of the elastic and hydrodynamic problems is proposed. For the nonlinear Reynolds equation, a characteristics method and a...
We study the boundary value problem in , on , where is a smooth bounded domain in . Our attention is focused on two cases when , where for any or for any . In the former case we show the existence of infinitely many weak solutions for any . In the latter we prove that if is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a -symmetric version for even functionals...