The global existence of weak solutions of the mollified system of equations of motion of viscous compressible fluid
We study boundary layer solutions of the isentropic, compressible Navier-Stokes equations with Navier-friction boundary conditions when the viscosity constants appearing in the momentum equation are proportional to a small parameter . These boundary conditions are characteristic for the underlying inviscid problem, the compressible Euler equations.The boundary condition implies that the velocity on the boundary is proportional to the tangential component of the stress. The normal component of velocity...
We consider the Euler equations for compressible fluids in a nozzle whose cross-section is variable and may contain discontinuities. We view these equations as a hyperbolic system in nonconservative form and investigate weak solutions in the sense of Dal Maso, LeFloch and Murat [J. Math. Pures Appl.74 (1995) 483–548]. Observing that the entropy equality has a fully conservative form, we derive a minimum entropy principle satisfied by entropy solutions. We then establish the stability of a class...
A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.
The main goal of this work is to present two different problems arising in Fluid Dynamics of perforated domains or porous media. The first problem concerns the compressible flow of an ideal gas through a porous media and our goal is the mathematical derivation of Darcy's law. This is relevant in oil reservoirs, agriculture, soil infiltration, etc. The second problem deals with the incompressible flow of a fluid reacting with the exterior of many packed solid particles. This is related with absorption...
Si fornisce un teorema di unicità per moti stazionari regolari di fluidi compressibili, viscosi, termicamente conduttori, svolgentisi in regioni esterne a domini compatti della spazio fisico.
Si fornisce un teorema di unicità per moti stazionari regolari di fluidi compressibili, viscosi, termicamente conduttori, svolgentisi in regioni limitate dello spazio fisico.
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law if and if , , depending on the model for the heat flux.