Displaying 261 – 280 of 426

Showing per page

On the multiple overlap function of the SK model.

Sergio de Carvalho Bezerra, Samy Tindel (2007)

Publicacions Matemàtiques

In this note, we prove an asymptotic expansion and a central limit theorem for the multiple overlap R1, ..., s of the SK model, defined for given N, s ≥ 1 by R1, ..., s = N-1Σi≤N σ1i ... σsi. These results are obtained by a careful analysis of the terms appearing in the cavity derivation formula, as well as some graph induction procedures. Our method could hopefully be applied to other spin glasses models.

On the number of ground states of the Edwards–Anderson spin glass model

Louis-Pierre Arguin, Michael Damron (2014)

Annales de l'I.H.P. Probabilités et statistiques

Ground states of the Edwards–Anderson (EA) spin glass model are studied on infinite graphs with finite degree. Ground states are spin configurations that locally minimize the EA Hamiltonian on each finite set of vertices. A problem with far-reaching consequences in mathematics and physics is to determine the number of ground states for the model on d for any d . This problem can be seen as the spin glass version of determining the number of infinite geodesics in first-passage percolation or the number...

On the Plasma-Charge problem

Mario Pulvirenti (2009/2010)

Séminaire Équations aux dérivées partielles

This short report is a review on recent results of S. Caprino, C. Marchioro, E. Miot and the author on the initial value problem associated to the evolution of a continuous distribution of charges (plasma) in presence of a finite number of point charges.

Optimal feedback control of Ginzburg-Landau equation for superconductivity via differential inclusion

Yuncheng You (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...

Particle-in-wavelets scheme for the 1D Vlasov-Poisson equations ⋆⋆⋆

Romain Nguyen van yen, Éric Sonnendrücker, Kai Schneider, Marie Farge (2011)

ESAIM: Proceedings

A new numerical scheme called particle-in-wavelets is proposed for the Vlasov-Poisson equations, and tested in the simplest case of one spatial dimension. The plasma distribution function is discretized using tracer particles, and the charge distribution is reconstructed using wavelet-based density estimation. The latter consists in projecting the Delta distributions corresponding to the particles onto a finite dimensional linear space spanned by...

Process-level quenched large deviations for random walk in random environment

Firas Rassoul-Agha, Timo Seppäläinen (2011)

Annales de l'I.H.P. Probabilités et statistiques

We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.

Currently displaying 261 – 280 of 426