Previous Page 2

Displaying 21 – 36 of 36

Showing per page

On the Lawrence–Doniach model of superconductivity: magnetic fields parallel to the axes

Stan Alama, Lia Bronsard, Etienne Sandier (2012)

Journal of the European Mathematical Society

We consider periodic minimizers of the Lawrence–Doniach functional, which models highly anisotropic superconductors with layered structure, in the simultaneous limit as the layer thickness tends to zero and the Ginzburg–Landau parameter tends to infinity. In particular, we consider the properties of minimizers when the system is subjected to an external magnetic field applied either tangentially or normally to the superconducting planes. For normally applied fields, our results show that the resulting...

On the multiple overlap function of the SK model.

Sergio de Carvalho Bezerra, Samy Tindel (2007)

Publicacions Matemàtiques

In this note, we prove an asymptotic expansion and a central limit theorem for the multiple overlap R1, ..., s of the SK model, defined for given N, s ≥ 1 by R1, ..., s = N-1Σi≤N σ1i ... σsi. These results are obtained by a careful analysis of the terms appearing in the cavity derivation formula, as well as some graph induction procedures. Our method could hopefully be applied to other spin glasses models.

On the number of ground states of the Edwards–Anderson spin glass model

Louis-Pierre Arguin, Michael Damron (2014)

Annales de l'I.H.P. Probabilités et statistiques

Ground states of the Edwards–Anderson (EA) spin glass model are studied on infinite graphs with finite degree. Ground states are spin configurations that locally minimize the EA Hamiltonian on each finite set of vertices. A problem with far-reaching consequences in mathematics and physics is to determine the number of ground states for the model on d for any d . This problem can be seen as the spin glass version of determining the number of infinite geodesics in first-passage percolation or the number...

On the Plasma-Charge problem

Mario Pulvirenti (2009/2010)

Séminaire Équations aux dérivées partielles

This short report is a review on recent results of S. Caprino, C. Marchioro, E. Miot and the author on the initial value problem associated to the evolution of a continuous distribution of charges (plasma) in presence of a finite number of point charges.

Optimal feedback control of Ginzburg-Landau equation for superconductivity via differential inclusion

Yuncheng You (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...

Currently displaying 21 – 36 of 36

Previous Page 2