Displaying 541 – 560 of 816

Showing per page

On the global dynamics of the cancer AIDS-related mathematical model

Konstantin E. Starkov, Corina Plata-Ante (2014)

Kybernetika

In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive...

On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach

C. Franco, T. Tzvetkova-Chevolleau, A. Stéphanou (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we propose a computational model to investigate the coupling between cell’s adhesions and actin fibres and how this coupling affects cell shape and stability. To accomplish that, we take into account the successive stages of adhesion maturation from adhesion precursors to focal complexes and ultimately to focal adhesions, as well as the actin fibres evolution from growing filaments, to bundles and finally contractile stress fibres.We use substrates with discrete patterns of adhesive...

On the Mathematical Modelling of Microbial Growth: Some Computational Aspects

Markov, Svetoslav (2011)

Serdica Journal of Computing

We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are...

On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis

Piotr Biler, Lorenzo Brandolese (2009)

Studia Mathematica

We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.

On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher

Adrien Blanchet (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass M c such that the solutions exist globally in time if the mass is less than M c and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also...

On the Relations Between 2D and 3D Fractal Dimensions: Theoretical Approach and Clinical Application in Bone Imaging

H. Akkari, I. Bhouri, P. Dubois, M. H. Bedoui (2008)

Mathematical Modelling of Natural Phenomena

The inner knowledge of volumes from images is an ancient problem. This question becomes complicated when it concerns quantization, as the case of any measurement and in particular the calculation of fractal dimensions. Trabecular bone tissues have, like many natural elements, an architecture which shows a fractal aspect. Many studies have already been developed according to this approach. The question which arises however is to know to which extent it is possible to get an exact determination of the...

On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations

Luca Formaggia, Alexandra Moura, Fabio Nobile (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the coupling between three-dimensional (3D) and one-dimensional (1D) fluid-structure interaction (FSI) models describing blood flow inside compliant vessels. The 1D model is a hyperbolic system of partial differential equations. The 3D model consists of the Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall dynamics. A non standard formulation for the Navier-Stokes equations is adopted to have suitable boundary conditions for the...

On the Use of the Hill Functions in Mathematical Models of Gene Regulatory Networks

M. Santillán (2008)

Mathematical Modelling of Natural Phenomena

Hill functions follow from the equilibrium state of the reaction in which n ligands simultaneously bind a single receptor. This result if often employed to interpret the Hill coefficient as the number of ligand binding sites in all kinds of reaction schemes. Here, we study the equilibrium states of the reactions in which n ligand bind a receptor sequentially, both non-cooperatively and in a cooperative fashion. The main outcomes of such analysis are that: n is not a good estimate, but only an upper...

On two methods for the parameter estimation problem with spatio-temporal FRAP data

Papáček, Štěpán, Jablonský, Jiří, Matonoha, Ctirad (2015)

Programs and Algorithms of Numerical Mathematics

FRAP (Fluorescence Recovery After Photobleaching) is a measurement technique for determination of the mobility of fluorescent molecules (presumably due to the diffusion process) within the living cells. While the experimental setup and protocol are usually fixed, the method used for the model parameter estimation, i.e. the data processing step, is not well established. In order to enhance the quantitative analysis of experimental (noisy) FRAP data, we firstly formulate the inverse problem of model...

On useful schema in survival analysis after heart attack

Czesław Stępniak (2014)

Discussiones Mathematicae Probability and Statistics

Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers

Optimal control for a class of compartmental models in cancer chemotherapy

Andrzej Świerniak, Urszula Ledzewicz, Heinz Schättler (2003)

International Journal of Applied Mathematics and Computer Science

We consider a general class of mathematical models P for cancer chemotherapy described as optimal control problems over a fixed horizon with dynamics given by a bilinear system and an objective which is linear in the control. Several two- and three-compartment models considered earlier fall into this class. While a killing agent which is active during cell division constitutes the only control considered in the two-compartment model, Model A, also two three-compartment models, Models B and C, are...

Optimal Control of a Cancer Cell Model with Delay

C. Collins, K.R. Fister, M. Williams (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we look at a model depicting the relationship of cancer cells in different development stages with immune cells and a cell cycle specific chemotherapy drug. The model includes a constant delay in the mitotic phase. By applying optimal control theory, we seek to minimize the cost associated with the chemotherapy drug and to minimize the number of tumor cells. Global existence of a solution has been shown for this model and existence...

Currently displaying 541 – 560 of 816