Previous Page 2

Displaying 21 – 37 of 37

Showing per page

Boundary exact controllability for a porous elastic Timoshenko system

Manoel J. Santos, Carlos A. Raposo, Leonardo R. S. Rodrigues (2020)

Applications of Mathematics

In this paper, we consider a one-dimensional system governed by two partial differential equations. Such a system models phenomena in engineering, such as vibrations in beams or deformation of elastic bodies with porosity. By using the HUM method, we prove that the system is boundary exactly controllable in the usual energy space. We will also determine the minimum time allowed by the method for the controllability to occur.

Boundary feedback stabilization of a three-layer sandwich beam : Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Boundary observability for the space semi-discretizations of the 1 – d wave equation

Juan Antonio Infante, Enrique Zuazua (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider space semi-discretizations of the 1-d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability, i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the energy concentrated on the boundary as the net-spacing h → 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a...

Boundary sentinels in cylindrical domains.

J. Saint Jean Paulin, M. Vanninathan (2001)

Revista Matemática Complutense

We study a model describing vibrations of a cylindrical domain with thickness e > 0. A characteristic of this model is that it contains pollution terms in the boundary data and missing terms in the initial data. The method of sentinels'' of J. L. Lions [7] is followed to construct a sentinel using the observed vibrations on the boundary. Such a sentinel, by construction, provides information on pollution terms independent of missing terms. This requires resolution of initial-boundary value...

Boundary stabilization of Maxwell’s equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.

Boundary stabilization of Maxwell's equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the stabilization of Maxwell's equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard" identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks. ...

Boundary stabilization of the linear elastodinamic system by a Lyapunov-type method.

Rabah Bey, Amar Heminna, Jean-Pierre Lohéac (2003)

Revista Matemática Complutense

We propose a direct approach to obtain the boundary stabilization of the isotropic linear elastodynamic system by a natural feedback; this method uses local coordinates in the expression of boundary integrals as a main tool. It leads to an explicit decay rate of the energy function and requires weak geometrical conditions: for example, the spacial domain can be the difference of two star-shaped sets.

Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability

Andrea Bacciotti (2017)

Kybernetika

The main result of this paper is a sufficient condition for the existence of periodic switching signals which render asymptotically stable at the origin a linear switched process defined by a pair of 2 × 2 real matrices. The interest of this result is motivated by the application to the problem of bounded-input-bounded-state (with respect to an external input) stabilization of linear switched processes.

Currently displaying 21 – 37 of 37

Previous Page 2