Previous Page 4

Displaying 61 – 79 of 79

Showing per page

Discrete-time state description of pure deadtime processes

Václav Soukup (1999)

Kybernetika

This contribution deals with the discrete-time linear state models of pure deadtime multi-input, multi-output dynamic processes. A straightforward way is presented to obtain minimum-dimensional state realizations of these processes.

Discrete-time symmetric polynomial equations with complex coefficients

Didier Henrion, Jan Ježek, Michael Šebek (2002)

Kybernetika

Discrete-time symmetric polynomial equations with complex coefficients are studied in the scalar and matrix case. New theoretical results are derived and several algorithms are proposed and evaluated. Polynomial reduction algorithms are first described to study theoretical properties of the equations. Sylvester matrix algorithms are then developed to solve numerically the equations. The algorithms are implemented in the Polynomial Toolbox for Matlab.

Discretization schemes for Lyapunov-Krasovskii functionals in time-delay systems

Keqin Gu (2001)

Kybernetika

This article gives an overview of discretized Lyapunov functional methods for time-delay systems. Quadratic Lyapunov–Krasovskii functionals are discretized by choosing the kernel to be piecewise linear. As a result, the stability conditions may be written in the form of linear matrix inequalities. Conservatism may be reduced by choosing a finer mesh. Simplification techniques, including elimination of variables and using integral inequalities are also discussed. Systems with multiple delays and...

Disturbance decoupling of nonlinear MISO systems by static measurement feedback

Richard Pothin, Claude H. Moog, Xiao Hua Xia (2002)

Kybernetika

This paper highlights the role of the rank of a differential one-form in the solution of such nonlinear control problems via measurement feedback as disturbance decoupling problem of multi-input single output (MISO) systems. For the later problem, some necessary conditions and sufficient conditions are given.

Domaine de victoire et stratégies viables chez les pêcheurs décrits par l'anthropologue Fredrik Barth

Noël Bonneuil, Patrick Saint-Pierre (1998)

Mathématiques et Sciences Humaines

L'anthropologue Fredrik Barth a analysé l'émergence des formes sociales chez les pêcheurs norvégiens. Sa perspective est bien modélisée par les outils mathématiques de la théorie de la viabilité, grâce auxquels on peut calculer l'ensemble des états à partir desquels la survie du système est encore possible, ainsi que la bonne décision à prendre à chaque instant, entre explorer ou suivre les autres bateaux. En outre, il se trouve que, techniquement, la condition de compacité des images de la correspondance...

Doubly reflected BSDEs with call protection and their approximation

Jean-François Chassagneux, Stéphane Crépey (2014)

ESAIM: Probability and Statistics

We study the numerical approximation of doubly reflected backward stochastic differential equations with intermittent upper barrier (RIBSDEs). These denote reflected BSDEs in which the upper barrier is only active on certain random time intervals. From the point of view of financial interpretation, RIBSDEs arise as pricing equations of game options with constrained callability. In a Markovian set-up we prove a convergence rate for a time-discretization scheme by simulation to an RIBSDE. We also...

Dual-terminal event triggered control for cyber-physical systems under false data injection attacks

Zhiwen Wang, Xiangnan Xu, Hongtao Sun, Long Li (2020)

Kybernetika

This paper deals with the problem of security-based dynamic output feedback control of cyber-physical systems (CPSs) with the dual-terminal event triggered mechanisms (DT-ETM) under false data injection (FDI) attacks. Considering the limited attack energy, FDI attacks taking place in transmission channels are modeled as extra bounded disturbances for the resulting closed-loop system, thus enabling H performance analysis with a suitable ϱ attenuation level. Then two buffers at the controller and...

Dynamic approach to optimum synthesis of a four-bar mechanism using a swarm intelligence algorithm

Edgar A. Portilla-Flores, Maria B. Calva-Yáñez, Miguel G. Villarreal-Cervantes, Paola A. Niño Suárez, Gabriel Sepúlveda-Cervantes (2014)

Kybernetika

This paper presents a dynamic approach to the synthesis of a crank-rocker four-bar mechanism, that is obtained by an optimization problem and its solution using the swarm intelligence algorithm called Modified-Artificial Bee Colony (M-ABC). The proposed dynamic approach states a mono-objective dynamic optimization problem (MODOP), in order to obtain a set of optimal parameters of the system. In this MODOP, the kinematic and dynamic models of the whole system are consider as well as a set of constraints...

Dynamic external force feedback loop control of a robot manipulator using a neural compensator - Application to the trajectory following in an unknown environment

Farid Ferguene, Redouane Toumi (2009)

International Journal of Applied Mathematics and Computer Science

Force/position control strategies provide an effective framework to deal with tasks involving interaction with the environment. One of these strategies proposed in the literature is external force feedback loop control. It fully employs the available sensor measurements by operating the control action in a full dimensional space without using selection matrices. The performance of this control strategy is affected by uncertainties in both the robot dynamic model and environment stiffness. The purpose...

Currently displaying 61 – 79 of 79

Previous Page 4