Displaying 81 – 100 of 1697

Showing per page

A sample-time adjusted feedback for robust bounded output stabilization

Patricio Ordaz, Hussain Alazki, Alexander Poznyak (2013)

Kybernetika

This paper deals with a bounded control design for a class of nonlinear systems where the mathematical model may be not explicitly given. This class of uncertain nonlinear systems governed by a system of ODE with quasi-Lipschitz right-hand side and containing external perturbations as well. The Attractive Ellipsoid Method (AEM) application permits to describe the class of nonlinear feedbacks (containing a nonlinear projection operator, a linear state estimator and a feedback matrix-gain) guaranteeing...

A separation principle for the stabilization of a class of time delay nonlinear systems

Amel Benabdallah (2015)

Kybernetika

In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.

A simple mathematical model of the human liver

Lenka Čelechovská (2004)

Applications of Mathematics

The parameter estimation problem for a continuous dynamical system is a difficult one. In this paper we study a simple mathematical model of the liver. For the parameter identification we use the observed clinical data obtained by the BSP test. Bellman’s quasilinearization method and its modifications are applied.

A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets

Przemysław Śliwiński, Zygmunt Hasiewicz, Paweł Wachel (2013)

International Journal of Applied Mathematics and Computer Science

A simple semi-recursive routine for nonlinearity recovery in Hammerstein systems is proposed. The identification scheme is based on the Haar wavelet kernel and possesses a simple and compact form. The convergence of the algorithm is established and the asymptotic rate of convergence (independent of the input density smoothness) is shown for piecewiseLipschitz nonlinearities. The numerical stability of the algorithm is verified. Simulation experiments for a small and moderate number of input-output...

A singular controllability problem with vanishing viscosity

Ioan Florin Bugariu, Sorin Micu (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to answer the question: Do the controls of a vanishing viscosity approximation of the one dimensional linear wave equation converge to a control of the conservative limit equation? The characteristic of our viscous term is that it contains the fractional power α of the Dirichlet Laplace operator. Through the parameter α we may increase or decrease the strength of the high frequencies damping which allows us to cover a large class of dissipative mechanisms. The viscous term,...

A singular perturbation problem in exact controllability of the Maxwell system

John E. Lagnese (2001)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies the exact controllability of the Maxwell system in a bounded domain, controlled by a current flowing tangentially in the boundary of the region, as well as the exact controllability the same problem but perturbed by a dissipative term multiplied by a small parameter in the boundary condition. This boundary perturbation improves the regularity of the problem and is therefore a singular perturbation of the original problem. The purpose of the paper is to examine the connection,...

A Singular Perturbation Problem in Exact Controllability of the Maxwell System

John E. Lagnese (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies the exact controllability of the Maxwell system in a bounded domain, controlled by a current flowing tangentially in the boundary of the region, as well as the exact controllability the same problem but perturbed by a dissipative term multiplied by a small parameter in the boundary condition. This boundary perturbation improves the regularity of the problem and is therefore a singular perturbation of the original problem. The purpose of the paper is to examine the connection, for...

A study on decentralized H feedback control systems with local quantizers

Guisheng Zhai, Ning Chen, Weihua Gui (2009)

Kybernetika

In this paper, we study decentralized H feedback control systems with quantized signals in local input-output (control) channels. We first assume that a decentralized output feedback controller has been designed for a multi-channel continuous-time system so that the closed-loop system is Hurwitz stable and a desired H disturbance attenuation level is achieved. However, since the local measurement outputs are quantized by a general quantizer before they are passed to the controller, the system’s...

A theorem on the controllability of pertubated linear control systems

Ornella Naselli Ricceri (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note, applying our recent Theorem 3.1 of [7], we prove that suitable perturbations of a completely controllable linear control system, do not affect the controllability of the system.

Currently displaying 81 – 100 of 1697