Displaying 1481 – 1500 of 2294

Showing per page

On the solution of the constrained multiobjective control problem with the receding horizon approach

Daniele De Vito, Riccardo Scattolini (2008)

Kybernetika

This paper deals with a multiobjective control problem for nonlinear discrete time systems. The problem consists of finding a control strategy which minimizes a number of performance indexes subject to state and control constraints. A solution to this problem through the Receding Horizon approach is proposed. Under standard assumptions, it is shown that the resulting control law guarantees closed-loop stability. The proposed method is also used to provide a robustly stabilizing solution to the problem...

On the stability of T-S fuzzy control for non-linear systems.

Zoe Doulgeri, John B. Theocharis (2000)

Mathware and Soft Computing

This work concerns the stability analysis of a non-linear system controlled by a fuzzy T-S control law. It is shown that the closed loop system is in general expressed by a T-S fuzzy system composed of rules with affine linear systems in their consequent parts. The stability of affine T-S systems is then investigated for a special case using as an example the regulation problem of single link robot arm. Stability conditions are derived using the indirect and direct Lyapunov method and simulation...

On the stabilization problem for nonholonomic distributions

Ludovic Rifford, Emmanuel Trélat (2009)

Journal of the European Mathematical Society

Let M be a smooth connected complete manifold of dimension n , and Δ be a smooth nonholonomic distribution of rank m n on M . We prove that if there exists a smooth Riemannian metric on1for which no nontrivial singular path is minimizing, then there exists a smooth repulsive stabilizing section of Δ on M . Moreover, in dimension three, the assumption of the absence of singular minimizing horizontal paths can be dropped in the Martinet case. The proofs are based on the study, using specific results of...

On the state observation and stability for uncertain nonlinear systems

Mohamed Ali Hammami (2000)

Kybernetika

In this paper, we treat the class of nonlinear uncertain dynamic systems that was considered in [3,2,1,4]. We consider continuous-time dynamical systems whose nominal part is linear and whose uncertain part is norm-bounded. We study the problems of state observation and obtaining stabilizing controller for uncertain nonlinear systems, where the uncertainties are characterized by known bounds.

On the static output feedback stabilization of deterministic finite automata based upon the approach of semi-tensor product of matrices

Zhipeng Zhang, Zengqiang Chen, Xiaoguang Han, Zhongxin Liu (2018)

Kybernetika

In this paper, the static output feedback stabilization (SOFS) of deterministic finite automata (DFA) via the semi-tensor product (STP) of matrices is investigated. Firstly, the matrix expression of Moore-type automata is presented by using STP. Here the concept of the set of output feedback feasible events (OFFE) is introduced and expressed in the vector form, and the stabilization of DFA is defined in the sense of static output feedback (SOF) control. Secondly, SOFS problem of DFA is investigated...

On the structure at infinity of linear delay systems with application to the disturbance decoupling problem

Rabah Rabah, Michel Malabre (1999)

Kybernetika

The disturbance decoupling problem is studied for linear delay systems. The structural approach is used to design a decoupling precompensator. The realization of the given precompensator by static state feedback is studied. Using various structural and geometric tools, a detailed description of the feedback is given, in particular, derivative of the delayed disturbance can be needed in the realization of the precompensator.

On the structure of linear recurrent error-control codes

Michel Fliess (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

On the structure of linear recurrent error-control codes

Michel Fliess (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space

Giuseppe Conti, Valeri Obukhovskiĭ, Pietro Zecca (1996)

Banach Center Publications

In this paper we show that the set of all mild solutions of the Cauchy problem for a functional-differential inclusion in a separable Banach space E of the form x’(t) ∈ A(t)x(t) + F(t,xt) is an R δ -set. Here A(t) is a family of linear operators and F is a Carathéodory type multifunction. We use the existence result proved by V. V. Obukhovskiĭ [22] and extend theorems on the structure of solutions sets obtained by N. S. Papageorgiou [23] and Ya. I. Umanskiĭ [32].

On the well-posedness and regularity of the wave equation with variable coefficients

Bao-Zhu Guo, Zhi-Xiong Zhang (2007)

ESAIM: Control, Optimisation and Calculus of Variations

An open-loop system of a multidimensional wave equation with variable coefficients, partial boundary Dirichlet control and collocated observation is considered. It is shown that the system is well-posed in the sense of D. Salamon and regular in the sense of G. Weiss. The Riemannian geometry method is used in the proof of regularity and the feedthrough operator is explicitly computed.

On time optimal control of the wave equation, its regularization and optimality system

Karl Kunisch, Daniel Wachsmuth (2013)

ESAIM: Control, Optimisation and Calculus of Variations

An approximation procedure for time optimal control problems for the linear wave equation is analyzed. Its asymptotic behavior is investigated and an optimality system including the maximum principle and the transversality conditions for the regularized and unregularized problems are derived.

Currently displaying 1481 – 1500 of 2294