The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce error estimates on the approximate solutions of convection diffusion equations by finite volume schemes.
The topic of this work is to obtain discrete Sobolev inequalities for
piecewise constant functions, and to deduce Lp error estimates
on the approximate solutions of convection diffusion equations by finite
volume schemes.
The idea of replacing a divergence constraint by a divergence boundary
condition is investigated. The connections between the formulations are
considered in detail. It is shown that the most common methods of using
divergence boundary conditions do not always work properly. Necessary
and sufficient conditions for the equivalence of the formulations are
given.
An axisymmetric second order elliptic problem with mixed boundary conditions is considered. The shape of the domain has to be found so as to minimize a cost functional, which is given in terms of the cogradient of the solution. A new dual finite element method is used for approximate solutions. The existence of an optimal domain is proven and a convergence analysis presented.
An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces.
For an elliptic model problem with non-homogeneous unilateral boundary conditions, two dual variational formulations are presented and justified on the basis of a saddle point theorem. Using piecewise linear finite element models on the triangulation of the given domain, dual numerical procedures are proposed. By means of one-sided approximations, some a priori error estimates are proved, assuming that the solution is sufficiently smooth. A posteriori error estimates and two-sided bounds for the...
A model second order elliptic equation in cylindrical coordinates with mixed boundary conditions is considered. A dual variational formulation is employed to calculate the cogradient of the solution directly. Approximations are defined on the basis of standard finite elements spaces. Convergence analysis and some a posteriori error estimates are presented.
Currently displaying 21 –
38 of
38