The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
244
In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this...
In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this...
The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted by noises...
In this paper we consider second order evolution equations with unbounded feedbacks. Under a regularity assumption we show that observability properties for the undamped problem imply decay estimates for the damped problem. We consider both uniform and non uniform decay properties.
In this paper we consider second order evolution equations with unbounded feedbacks.
Under a regularity assumption we show that observability properties for the undamped
problem imply decay estimates for the damped problem. We consider both uniform and
non uniform decay properties.
We consider abstract second order evolution equations with unbounded
feedback with delay. Existence results are obtained under some
realistic assumptions. Sufficient and explicit conditions are derived that guarantee the exponential or polynomial stability. Some new examples that enter into our abstract framework are presented.
We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...
We intend to conduct a fairly complete study on
Timoshenko beams with pointwise feedback controls and seek to obtain information
about the eigenvalues, eigenfunctions, Riesz-Basis-Property,
spectrum-determined-growth-condition, energy decay rate and various stabilities
for the beams. One major difficulty of the present problem is the non-simplicity
of the eigenvalues.
In fact, we shall indicate in this paper situations where the multiplicity of
the eigenvalues is at least two. We build all the...
The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended...
We propose a new type of Proportional Integral (PI) state observer for a class of nonlinear systems in continuous time which ensures an asymptotic stable convergence of the state estimates. Approximations of nonlinearity are not necessary to obtain such results, but the functions must be, at least locally, of the Lipschitz type. The obtained state variables are exact and robust against noise. Naslin's damping criterion permits synthesizing gains in an algebraically simple and efficient way. Both...
It is known that for affine nonlinear systems the drift-observability property (i. e. observability for zero input) is not sufficient to guarantee the existence of an asymptotic observer for any input. Many authors studied structural conditions that ensure uniform observability of nonlinear systems (i. e. observability for any input). Conditions are available that define classes of systems that are uniformly observable. This work considers the problem of state observation with exponential error...
Let be a parabolic second order differential operator on the domain Given a function and such that the support of is contained in , we let be the solution to the equation:Given positive bounds we seek a function with support in such that the corresponding solution satisfies:We prove in this article that, under some regularity conditions on the coefficients of continuous solutions are unique and dense in the sense that can be -approximated, but an exact solution does not...
Let L be a parabolic second order differential operator on the domain Given a function and such that the support of û is
contained in , we let be the solution to the equation:
Given positive bounds we seek a function u with support
in such that the corresponding solution y
satisfies:
We prove in this article that, under some regularity conditions on the
coefficients of L, continuous solutions are unique and dense in the sense
that can be C0-approximated, but an
exact solution...
Currently displaying 161 –
180 of
244