Mixed integer programming, general concept inclusions and fuzzy description logics.
The primary aim of this article is to put forward new classes of uni-nullnorms on certain classes of bounded lattices via closure (interior) operators. Due to the new classes of uninorms combining both a t-norm and a t-conorm by various kinds of closure operators or interior operators, the relationships and properties among the same class of uninorms on , we obtain new classes of uni-nullnorms on via closure (interior) operators. The constructions of uni-nullnorms on some certain classes...
In this note, we point out that Theorem 3.1 as well as Theorem 3.5 in G. D. Çaylı and F. Karaçal (Kybernetika 53 (2017), 394-417) contains a superfluous condition. We have also generalized them by using closure (interior, resp.) operators.
In the study, we introduce the definition of a locally internal uninorm on an arbitrary bounded lattice . We examine some properties of an idempotent and locally internal uninorm on an arbitrary bounded latice , and investigate relationship between these operators. Moreover, some illustrative examples are added to show the connection between idempotent and locally internal uninorm.
Distributivity of fuzzy implications over different fuzzy logic connectives have a very important role to play in efficient inferencing in approximate reasoning, especially in fuzzy control systems (see [9, 15] and [4]). Recently in some considerations connected with these distributivity laws, the following functional equation appeared (see [5]) where and is an unknown function. In this paper we consider in detail a generalized version of this equation, namely the equation where are functions...
This paper is devoted to the study of a class of left-continuous uninorms locally internal in the region and the residual implications derived from them. It is shown that such uninorm can be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit expressions for the residual implication derived from this special class of uninorms are given. A set of axioms is presented that characterizes those binary functions for which a uninorm of this special class exists...
Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.
The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described.
Aiming at the previously-proposed entropy-based differently implicational algorithm of fuzzy inference, this study analyzes its continuity. To begin with, for the FMP (fuzzy modus ponens) and FMT (fuzzy modus tollens) problems, the continuous as well as uniformly continuous properties of the entropy-based differently implicational algorithm are demonstrated for the Tchebyshev and Hamming metrics, in which the R-implications derived from left-continuous t-norms are employed. Furthermore, four numerical...
The aim of the paper is to present three-variable generalizations of fuzzy metric spaces in sense of George and Veeramani from functional and topological points of view, respectively. From the viewpoint of functional generalization, we introduce a notion of generalized fuzzy 2-metric spaces, study their topological properties, and point out that it is also a common generalization of both tripled fuzzy metric spaces proposed by Tian et al. and -fuzzy metric spaces proposed by Sedghi and Shobe. Since...
This paper deals with numerical functions J : [0,1] x [0,1] → [0,1] able to functionally express operators →: [0,1]X x [0,1]Y → [0,1]XxY defined as (μ → σ)(x,y) = J(μ(x),σ(y)), and verifying either Modus Ponens or Modus Tollens, or both. The concrete goal of the paper is to search for continuous t-norms T and strong-negation functions N for which it is either T(a, J(a,b)) ≤ b (Modus Ponens) or T(N(b), J(a,b)) ≤ N(a) (Modus Tollens), or both, for all a,b in [0,1] and a given J. Functions J are taken...
In this paper, we introduce the notion of pseudo BE-algebra which is a generalization of BE-algebra. We define the concepts of pseudo subalgebras and pseudo filters and prove that, under some conditions, pseudo subalgebra can be a pseudo filter. We prove that every homomorphic image and pre-image of a pseudo filter is also a pseudo filter. Furthermore, the notion of pseudo upper sets in pseudo BE-algebras introduced and is proved that every pseudo filter is an union of pseudo upper sets.
This paper is devoted to characterize monotonicity, conditionality and transitivity of some rational relations defined in a probabilized Boolean Algebra.
Recently, the topic of construction methods for triangular norms (triangular conorms), uninorms, nullnorms, etc. has been studied widely. In this paper, we propose construction methods for triangular norms (t-norms) and triangular conorms (t-conorms) on bounded lattices by using interior and closure operators, respectively. Thus, we obtain some proposed methods given by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8] as results. Also, we give some illustrative examples. Finally, we conclude that the...
Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on...
In this paper, we study on the direct product of uninorms on bounded lattices. Also, we define an order induced by uninorms which are a direct product of two uninorms on bounded lattices and properties of introduced order are deeply investigated. Moreover, we obtain some results concerning orders induced by uninorms acting on the unit interval .