Displaying 101 – 120 of 161

Showing per page

Quadratic modular symbols on Shimura curves

Pilar Bayer, Iván Blanco-Chacón (2013)

Journal de Théorie des Nombres de Bordeaux

We introduce the concept of quadratic modular symbol and study how these symbols are related to quadratic p -adic L -functions. These objects were introduced in [3] in the case of modular curves. In this paper, we discuss a method to attach quadratic modular symbols and quadratic p -adic L -functions to more general Shimura curves.

Quantum unique ergodicity for Eisenstein series on P S L 2 ( P S L 2 ( )

Dmitry Jakobson (1994)

Annales de l'institut Fourier

In this paper we prove microlocal version of the equidistribution theorem for Wigner distributions associated to Eisenstein series on P S L 2 ( ) P S L 2 ( ) . This generalizes a recent result of W. Luo and P. Sarnak who proves equidistribution for P S L 2 ( ) . The averaged versions of these results have been proven by Zelditch for an arbitrary finite-volume surface, but our proof depends essentially on the presence of Hecke operators and works only for congruence subgroups of S L 2 ( ) . In the proof the key estimates come from applying...

Simple zeros of degree 2 L -functions

Andrew R. Booker (2016)

Journal of the European Mathematical Society

We prove that the complete L -functions of classical holomorphic newforms have infinitely many simple zeros.

Symétries spectrales des fonctions zêtas

Frédéric Paugam (2009)

Journal de Théorie des Nombres de Bordeaux

On définit, en réponse à une question de Sarnak dans sa lettre a Bombieri [Sar01], un accouplement symplectique sur l’interprétation spectrale (due à Connes et Meyer) des zéros de la fonction zêta. Cet accouplement donne une formulation purement spectrale de la démonstration de l’équation fonctionnelle due à Tate, Weil et Iwasawa, qui, dans le cas d’une courbe sur un corps fini, correspond à la démonstration géométrique usuelle par utilisation de l’accouplement de dualité de Poincaré Frobenius-équivariant...

The distribution of Fourier coefficients of cusp forms over sparse sequences

Huixue Lao, Ayyadurai Sankaranarayanan (2014)

Acta Arithmetica

Let λ f ( n ) be the nth normalized Fourier coefficient of a holomorphic Hecke eigenform f ( z ) S k ( Γ ) . We establish that n x λ f 2 ( n j ) = c j x + O ( x 1 - 2 / ( ( j + 1 ) 2 + 1 ) ) for j = 2,3,4, which improves the previous results. For j = 2, we even establish a better result.

The local Jacquet-Langlands correspondence via Fourier analysis

Jared Weinstein (2010)

Journal de Théorie des Nombres de Bordeaux

Let F be a locally compact non-Archimedean field, and let B / F be a division algebra of dimension 4. The Jacquet-Langlands correspondence provides a bijection between smooth irreducible representations π of B × of dimension > 1 and irreducible cuspidal representations of GL 2 ( F ) . We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs ( , ρ ) , where M 2 ( F ) × B is an order and ρ is a finite-dimensional representation of a certain...

Currently displaying 101 – 120 of 161