Classes d'idéaux et classes de diviseurs
Serge Lang (1976/1977)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Robert F. Coleman (1995)
Journal de théorie des nombres de Bordeaux
Robert F. Coleman (1997)
Journal de théorie des nombres de Bordeaux
We define the notion overconvergent modular forms on where is a prime, and are positive integers and is prime to . We show that an overconvergent eigenform on of weight whose -eigenvalue has valuation strictly less than is classical.
Mark McConnell (1991)
Mathematische Annalen
Svetlana Katok (1985)
Inventiones mathematicae
Cornut, C., Vatsal, V. (2005)
Documenta Mathematica
J. Barge, E. Ghys (1992)
Mathematische Annalen
Paul Jenkins, Kyle Pratt (2015)
Acta Arithmetica
We give explicit upper bounds for the coefficients of arbitrary weight k, level 2 cusp forms, making Deligne’s well-known bound precise. We also derive asymptotic formulas and explicit upper bounds for the coefficients of certain level 2 modular functions.
Fedor Bogomolov, Yuri Tschinkel (2009)
Open Mathematics
We give examples of failure of the existence of co-fibered products in the category of algebraic curves.
Min Ho Lee (2015)
Acta Arithmetica
Jacobi-like forms for a discrete subgroup Γ of SL(2,ℝ) are formal power series which generalize Jacobi forms, and they correspond to certain sequences of modular forms for Γ. Given a modular form f, a Jacobi-like form can be constructed by using constant multiples of derivatives of f as coefficients, which is known as the Cohen-Kuznetsov lifting of f. We extend Cohen-Kuznetsov liftings to quasimodular forms by determining an explicit formula for a Jacobi-like form associated to a quasimodular form....
Jochen Heinloth (2004)
Annales de l'Institut Fourier
The aim of these notes is to generalize Laumon’s construction [20] of automorphic sheaves corresponding to local systems on a smooth, projective curve to the case of local systems with indecomposable unipotent ramification at a finite set of points. To this end we need an extension of the notion of parabolic structure on vector bundles to coherent sheaves. Once we have defined this, a lot of arguments from the article “ On the geometric Langlands conjecture” by Frenkel, Gaitsgory and Vilonen [11]...
Jean-Loup Waldspurger (1995/1996)
Séminaire Bourbaki
J.-L. Brylinski, J.-P. Labesse (1984)
Annales scientifiques de l'École Normale Supérieure
J. P. Labesse (1985)
Compositio Mathematica
Avner Ash, Glenn Stevens (1986)
Journal für die reine und angewandte Mathematik
Deitmar, Anton, Hilgert, Joachim (2005)
Documenta Mathematica
Joachim Schwermer, Ronnie Lee (1982)
Journal für die reine und angewandte Mathematik
Yacine Aït Amrane (2006)
Annales de l’institut Fourier
Let be a non-archimedean local field. This paper gives an explicit isomorphism between the dual of the special representation of and the space of harmonic cochains defined on the Bruhat-Tits building of , in the sense of E. de Shalit [11]. We deduce, applying the results of a paper of P. Schneider and U. Stuhler [9], that there exists a -equivariant isomorphism between the cohomology group of the Drinfeld symmetric space and the space of harmonic cochains.
F. Grunewald, D. Blasius, J. Franke (1994)
Inventiones mathematicae
J. William Hoffman, Steven H. Weintraub (2003)
Fundamenta Mathematicae
Let 𝓐₂(n) = Γ₂(n)∖𝔖₂ be the quotient of Siegel's space of degree 2 by the principal congruence subgroup of level n in Sp(4,ℤ). This is the moduli space of principally polarized abelian surfaces with a level n structure. Let 𝓐₂(n)* denote the Igusa compactification of this space, and ∂𝓐₂(n)* = 𝓐₂(n)* - 𝓐₂(n) its "boundary". This is a divisor with normal crossings. The main result of this paper is the determination of H(∂𝓐₂(n)*) as a module over the finite group Γ₂(1)/Γ₂(n). As an application...