Parabolic, hyperbolic and elliptic Poincaré series
We show that the generalized Fermat equations with signatures (5,5,7), (5,5,19), and (7,7,5) (and unit coefficients) have no non-trivial primitive integer solutions. Assuming GRH, we also prove the non-existence of non-trivial primitive integer solutions for the signatures (5,5,11), (5,5,13), and (7,7,11). The main ingredients for obtaining our results are descent techniques, the method of Chabauty-Coleman, and the modular approach to Diophantine equations.
Le but de cette note est de donner une démonstration complète du théorème 4.1 de [5] qui a pour objet d’expliciter l’action de l’inertie modérée sur la semi-simplifiée modulo d’une certaine famille (assez restreinte) de représentations cristallines du groupe de Galois absolu d’un corps -adique . Lorsque n’est pas absolument ramifié, le calcul de cette action a déjà été accompli par Fontaine et Laffaille qui ont montré qu’elle est entièrement déterminée par les poids de Hodge-Tate de , au...