Rational elliptic curves are modular
Bas Edixhoven (1999/2000)
Séminaire Bourbaki
Karen Vogtmann (1985)
Mathematische Annalen
B. Mazur (1978)
Inventiones mathematicae
YoungJu Choie, L. Alayne Parson (1990)
Mathematische Annalen
S. Kamienny (1985)
Journal für die reine und angewandte Mathematik
Fumiyuki Momose (1984)
Compositio Mathematica
Nils Bruin, Julio Fernández, Josep González, Joan-C. Lario (2007)
Acta Arithmetica
G. Frey (1982)
Journal für die reine und angewandte Mathematik
Norbert SCHAPPACHER (1981/1982)
Seminaire de Théorie des Nombres de Bordeaux
Jeffrey Hoffstein (1982)
Mathematische Zeitschrift
Amit Ghosh, Peter Sarnak (2012)
Journal of the European Mathematical Society
This note is concerned with the zeros of holomorphic Hecke cusp forms of large weight on the modular surface. The zeros of such forms are symmetric about three geodesic segments and we call those zeros that lie on these segments, real. Our main results give estimates for the number of real zeros as the weight goes to infinity.
Kaisa Matomäki (2016)
Journal of the European Mathematical Society
We study so-called real zeros of holomorphic Hecke cusp forms, that is, zeros on three geodesic segments on which the cusp form (or a multiple of it) takes real values. Ghosh and Sarnak, who were the first to study this problem, showed the existence of many such zeros if many short intervals contain numbers whose prime factors all belong to a certain subset of the primes.We prove new results concerning this sieving problem which leads to improved lower bounds for the number of real zeros.
R. R. Hall, J. C. Wilson, D. Zagier (1995)
Acta Arithmetica
Abdelmejid Bayad, Abdelaziz Raouj (2010)
Acta Arithmetica
Robin Chapman (2000)
Acta Arithmetica
We define a class of generalized Dedekind sums and prove a family of reciprocity laws for them. These sums and laws generalize those of Zagier [6]. The method is based on that of Solomon [5].
Torleiv Klove (1968)
Mathematica Scandinavica
Daniel R. Grayson (1986)
Commentarii mathematici Helvetici
Moon, Hyunsuk, Taguchi, Yuichiro (2003)
Documenta Mathematica
Yuval Z. Flicker (1990)
Annales de l'institut Fourier
The “regular”trace formula, for a test function with a local component which is Iwahori-biinvariant and sufficiently regular with respect to the other components, is developed in the context of a reductive group. It is used to give a simple proof of the theory of base-change for cuspidal automorphic representations of which have a supercuspidal component. A purely local proof is given to transfer orbital integrals of sufficiently many spherical functions, by relating them to regular Iwahori functions....
Eberhard Freitag, Klaus Pommerening (1982)
Journal für die reine und angewandte Mathematik